First consider the expression for:
SENTENCE1
Now select the answer that matches the following:
SENTENCE2
expr(["+", ["*", C, ["+", ["*", B, "x"], A]], D])
expr(["+", ["*", C, ["+", ["*", A, "x"], B]], D])
expr(["+", ["*", D, ["+", ["*", A, "x"], B]], C])
expr(["+", ["*", D, ["+", ["*", B, "x"], A]], C])
expr(["+", ["*", A, ["+", ["*", D, "x"], C]], B])
PRODUCT_TEXT1
\qquad \green{B} \times \green{x} = TERM1
SUM_TEXT1
\qquad TERM1 \blue{+ A}
PRODUCT_TEXT2
\qquad
\red{C} \times (\green{Bx} \blue{+ A}) = TERM2
SUM_TEXT2
\qquad TERM2 + \pink{D}
First consider the expression for:
SENTENCE1
Now select the answer that matches the following:
The quotient of the above expression and CODE_C. The quotient of CODE_C and the above expression.
SOLUTION
\dfrac{B + expr(["*", A, "x"])}{C}
\dfrac{C}{expr(["*", A, "x"]) + B}
C(expr(["*", A, "x"]) + B)
C(Bx + A)
\dfrac{Bx}{C} + A
PRODUCT_TEXT1
\qquad \green{B} \times \green{x} = TERM1
SUM_TEXT1
\qquad TERM1 \blue{+ A}
The quotient of TERM1 \blue{+ A}
and CODE_C
is:
\dfrac{TERM1 \blue{+ A}}{CODE_C}
The quotient of CODE_C
and TERM1 \blue{+ A}
is:
\dfrac{CODE_C}{TERM1 \blue{+ A}}