Solve for x
:
x=
SOLUTION
We learned in Vertical angles 1 that vertical angles are equal. Watch this video to understand why.
Set the angle measures equal to one another.
\blue{Ax + B^\circ} = \green{Cx + D^\circ}
Subtract \pink{Cx}
from both sides.
(Ax + B^\circ) \pink{- Cx} =
(Cx + D^\circ) \pink{- Cx}
A - Cx + B^\circ = D^\circ
Subtract \pink{abs(B)}^\circ
from both sides.
Add \pink{abs(B)}^\circ
to both sides.
(A - Cx + B^\circ) \pink{+ -B^\circ} =
D \pink{+ -B^\circ}
A - Cx = D - B^\circ
Divide both sides by \pink{A - C}
.
\dfrac{A - Cx}{\pink{A - C}} = \dfrac{D - B^\circ}{\pink{A - C}}
Simplify.
x = SOLUTION^\circ
Subtract \pink{Ax}
from both sides.
(Ax + B^\circ) \pink{- Ax} =
(Cx + D^\circ) \pink{- Ax}
B^\circ = C - Ax + D^\circ
Subtract \pink{abs(D)^\circ}
from both sides.
Add \pink{abs(D)^\circ}
to both sides.
B^\circ \pink{+ -D^\circ} =
(C - Ax + D^\circ) \pink{+ -D^\circ}
B - D^\circ = C - Ax
Divide both sides by \pink{C - A}
.
\dfrac{B - D^\circ}{\pink{C - A}} = \dfrac{C - Ax}{\pink{C - A}}
Simplify.
SOLUTION^\circ = x