randRange(3, 10) randRange(3, 10) AC * AC + BC * BC formattedSquareRootOf(AC * AC + BC * BC) randFromArray(["ABC", "BAC"]) ANGLE.substring(1) (ANGLE.substring(0,1) + ANGLE.substring(2)) "AB" ADJACENT_NAME === "AC" ? AC : BC OPPOSITE_NAME === "AC" ? AC : BC fractionSQRoot(ADJACENT_VALUE, AB) fractionSQRoot(OPPOSITE_VALUE, AB) fractionReduce(OPPOSITE_VALUE, ADJACENT_VALUE)
getGCD(OPPOSITE_VALUE, splitRadical(AB)[0]) splitRadical(AB)[1] "\\dfrac{" + (OPPOSITE_VALUE / FACTOR) + "}{" + formattedSquareRootOf(AB / FACTOR / FACTOR) + "}"

\overline{AC} is AC units long

\overline{BC} is BC units long

\overline{AB} is AB_STRING units long

What is \sin(\angle ANGLE) ?

Remember to rationalize the denominator if necessary.

betterTriangle( BC, AC, "A", "B", "C", BC, AC, AB_STRING ); path([ [ 0.4, 0 ], [ 0.4, 0.4 ], [ 0, 0.4 ] ]);
SIN
  • COS
  • SIN
  • TAN
  • \dfrac{1}{AB}
  • \dfrac{1}{BC}
  • \dfrac{1}{AC}
  • \dfrac{2 \sqrt{2}}{AC}

SOH CAH TOA

Sin = Opposite over Hypotenuse

opposite = \overline{OPPOSITE_NAME} = OPPOSITE_VALUE

hypotenuse = \overline{HYPOTENUSE_NAME} = AB_STRING

\sin(\angle ANGLE) = \dfrac{OPPOSITE_VALUE}{formattedSquareRootOf(AB)} = SIMPLE_SIN

Rationalize the denominator:

SIMPLE_SIN \cdot \dfrac{\sqrt{RATIONALIZE}}{\sqrt{RATIONALIZE}} = \dfrac{(OPPOSITE_VALUE / FACTOR) \cdot \sqrt{RATIONALIZE}} {formattedSquareRootOf(AB / FACTOR / FACTOR) \cdot \sqrt{RATIONALIZE}} = SIN

getGCD(ADJACENT_VALUE, splitRadical(AB)[0]) splitRadical(AB)[1] "\\dfrac{" + (ADJACENT_VALUE / FACTOR) + "}{" + formattedSquareRootOf(AB / FACTOR / FACTOR) + "}"

What is \cos(\angle ANGLE) ?

COS

SOH CAH TOA

Cos = Adjacent over Hypotenuse

adjacent = \overline{ADJACENT_NAME} = ADJACENT_VALUE

hypotenuse = \overline{HYPOTENUSE_NAME} = AB_STRING

\cos(\angle ANGLE) = \dfrac{ADJACENT_VALUE}{formattedSquareRootOf(AB)} = SIMPLE_COS

Rationalize the denominator:

SIMPLE_COS \cdot \dfrac{\sqrt{RATIONALIZE}}{\sqrt{RATIONALIZE}} = \dfrac{(ADJACENT_VALUE / FACTOR) \cdot \sqrt{RATIONALIZE}} {formattedSquareRootOf(AB / FACTOR / FACTOR) \cdot \sqrt{RATIONALIZE}} = COS

fraction(OPPOSITE_VALUE, ADJACENT_VALUE)

What is \tan(\angle ANGLE) ?

TAN

SOH CAH TOA

Tan = Opposite over Adjacent

opposite = \overline{OPPOSITE_NAME} = OPPOSITE_VALUE

adjacent = \overline{ADJACENT_NAME} = ADJACENT_VALUE

\tan(\angle ANGLE) = SIMPLE_TAN = TAN