\overline{AC}
is AC
units long
\overline{BC}
is BC
units long
\overline{AB}
is AB_STRING
units long
What is \sin(\angle ANGLE)
?
Remember to rationalize the denominator if necessary.
SIN
COS
SIN
TAN
\dfrac{1}{AB}
\dfrac{1}{BC}
\dfrac{1}{AC}
\dfrac{2 \sqrt{2}}{AC}
SOH CAH TOA
Sin = Opposite over Hypotenuse
opposite = \overline{OPPOSITE_NAME} = OPPOSITE_VALUE
hypotenuse = \overline{HYPOTENUSE_NAME} = AB_STRING
\sin(\angle ANGLE) = \dfrac{OPPOSITE_VALUE}{formattedSquareRootOf(AB)}
= SIMPLE_SIN
Rationalize the denominator:
SIMPLE_SIN \cdot \dfrac{\sqrt{RATIONALIZE}}{\sqrt{RATIONALIZE}} =
\dfrac{(OPPOSITE_VALUE / FACTOR) \cdot \sqrt{RATIONALIZE}}
{formattedSquareRootOf(AB / FACTOR / FACTOR) \cdot \sqrt{RATIONALIZE}} =
SIN
What is \cos(\angle ANGLE)
?
COS
SOH CAH TOA
Cos = Adjacent over Hypotenuse
adjacent = \overline{ADJACENT_NAME} = ADJACENT_VALUE
hypotenuse = \overline{HYPOTENUSE_NAME} = AB_STRING
\cos(\angle ANGLE) = \dfrac{ADJACENT_VALUE}{formattedSquareRootOf(AB)}
= SIMPLE_COS
Rationalize the denominator:
SIMPLE_COS \cdot \dfrac{\sqrt{RATIONALIZE}}{\sqrt{RATIONALIZE}} =
\dfrac{(ADJACENT_VALUE / FACTOR) \cdot \sqrt{RATIONALIZE}}
{formattedSquareRootOf(AB / FACTOR / FACTOR) \cdot \sqrt{RATIONALIZE}} =
COS
What is \tan(\angle ANGLE)
?
TAN
SOH CAH TOA
Tan = Opposite over Adjacent
opposite = \overline{OPPOSITE_NAME} = OPPOSITE_VALUE
adjacent = \overline{ADJACENT_NAME} = ADJACENT_VALUE
\tan(\angle ANGLE) = SIMPLE_TAN
= TAN