Find the area of the triangle.
Round to the nearest tenth.
The area of a triangle is \dfrac{1}{2} \times \purple{\text{BASE_WORD}}
\times \green{\text{HEIGHT_WORD}}
.
What is the height of this triangle?
\green{h} = \pink{HYPOT} \times \sin(ANGLE^\circ)
Therefore, the area of the triangle is
\dfrac{1}{2} \times \purple{BASE} \times \pink{HYPOT} \times \sin(ANGLE^\circ)
.
\qquad \approx fractionReduce(BASE * HYPOT, 2) \times roundTo(3, sin(ANGLE * PI / 180))
\qquad \approx SOLUTION
Write an expression for the area of the triangle.
Round to the nearest tenth.
1/2 * BASE * HYPOT * sin(x)
The area of a triangle is \dfrac{1}{2} \times \purple{\text{BASE_WORD}}
\times \green{\text{HEIGHT_WORD}}
.
What is the height of this triangle?
\green{h} = \pink{HYPOT} \times \sin(x)
Therefore, the area of the triangle is
\dfrac{1}{2} \times \purple{BASE} \times \pink{HYPOT} \times \sin(x)
.
More simply we can write, fractionReduce(BASE * HYPOT, 2) \sin(x)
.