Solve for x
and y
using substitution.
\color{BLUE}{expr(["+", ["*", A1, "x"], ["*", B1, "y"]]) = C1}
\color{GREEN}{y = expr(["+", ["*", -A2, "x"], C2])}
x
= X
y
= Y
Since y
has already been solved for, substitute expr(["+", ["*", -A2, "x"], C2])
for y
in the first equation.
\color{BLUE}{expr(["*", A1, "x"]) + B1-}\color{GREEN}{(expr(["+", ["*", -A2, "x"], C2]))}\color{BLUE}{= C1}
Simplify and solve for x
.
expr(["+", ["*", A1, "x"], ["*", B1 * -A2, "x"]]) + B1 * C2 = C1
expr(["+", ["*", A1 + B1 * -A2, "x"], B1 * C2]) = C1
expr(["+", ["*", A1 + B1 * -A2, "x"], B1 * C2])\color{BLUE}{SIGN_1abs( B1 * C2 )} = C1\color{BLUE}{SIGN_1abs( B1 * C2 )}
expr(["*", A1 + B1 * -A2, "x"]) = C1 - B1 * C2
\dfrac{expr(["*", A1 + B1 * -A2, "x"])}{\color{BLUE}{A1 + B1 * -A2}} = \dfrac{C1 - B1 * C2}{\color{BLUE}{A1 + B1 * -A2}}
\color{red}{x = X}
Now that you know \color{red}{x = X}
, plug it back into \thinspace \color{GREEN}{y = expr(["+", ["*", -A2, "x"], C2])}\thinspace
to find y
.
\color{GREEN}{y = -A2-}\color{red}{(X)}\color{GREEN}{ + C2}
y = -A2 * X + C2
y = Y
You can also plug \color{red}{x = X}
into \thinspace \color{BLUE}{expr(["+", ["*", A1, "x"], ["*", B1, "y"]]) = C1}\thinspace
and get the same answer for y
:
\color{BLUE}{A1-}\color{red}{(X)}\color{BLUE}{ + expr(["*", B1, "y"]) = C1}
\color{ORANGE}{y = Y}
Solve for x
and y
using substitution.
\color{BLUE}{expr(["+", ["*", A1, "x"], ["*", B1, "y"]]) = C1}
\color{GREEN}{x = expr(["+", ["*", -B2, "y"], C2])}
x
= X
y
= Y
Since x
has already been solved for, substitute expr(["+", ["*", -B2, "y"], C2])
for x
in the first equation.
\color{BLUE}{A1-}\color{GREEN}{(expr(["+", ["*", -B2, "y"], C2]))}\color{BLUE}{+ expr(["*", B1, "y"]) = C1}
Simplify and solve for y
.
expr(["+", ["*", A1 * -B2, "y"], A1 * C2]) + expr(["*", B1, "y"]) = C1
expr(["+", ["*", A1 * -B2 + B1, "y"], A1 * C2]) = C1
expr(["+", ["*", A1 * -B2 + B1, "y"], A1 * C2])\color{BLUE}{SIGN_1abs( A1 * C2 )} = C1\color{BLUE}{SIGN_1abs( A1 * C2 )}
expr(["*", A1 * -B2 + B1, "y"]) = C1 - A1 * C2
\dfrac{expr(["*", A1 * -B2 + B1, "y"])}{\color{BLUE}{A1 * -B2 + B1}} = \dfrac{C1 - A1 * C2}{\color{BLUE}{A1 * -B2 + B1}}
\color{ORANGE}{y = Y}
Now that you know \color{ORANGE}{y = Y}
, plug it back into \thinspace \color{GREEN}{x = expr(["+", ["*", -B2, "y"], C2])}\thinspace
to find x
.
\color{GREEN}{x = -B2-}\color{ORANGE}{(Y)}\color{GREEN}{ + C2}
x = -B2 * Y + C2
\color{red}{x = X}
You can also plug \color{ORANGE}{y = Y}
into \thinspace \color{BLUE}{expr(["+", ["*", A1, "x"], ["*", B1, "y"]]) = C1}\thinspace
and get the same answer for x
:
\color{BLUE}{expr(["*", A1, "x"]) + B1-}\color{ORANGE}{(Y)}\color{BLUE}{= C1}
\color{red}{x = X}