Given that:
\quad\begin{eqnarray}
\overline{BC} &=& HEIGHT_A \\
\overline{BD} &=& SIDE_B \\
\overline{DE} &=& HEIGHT_B \\
\overline{AB} &=& x \\
\end{eqnarray}
What is the value of x
?
\overline{AB} : \overline{BC} = \dfrac{x}{HEIGHT_A}
\overline{AD} : \overline{DE} = \dfrac{x + SIDE_B}{HEIGHT_B}
\dfrac{x}{HEIGHT_A} = \dfrac{x + SIDE_B}{HEIGHT_B}
HEIGHT_B \times x = HEIGHT_A \times (x + SIDE_B)
HEIGHT_Bx = coefficient(HEIGHT_A)x + HEIGHT_A * SIDE_B
plus(HEIGHT_B - HEIGHT_A + "x") = HEIGHT_A * SIDE_B
x = fractionReduce(HEIGHT_A * SIDE_B, HEIGHT_B - HEIGHT_A)
Given that:
\quad\begin{eqnarray}
\overline{AB} &=& SIDE_A \\
\overline{BD} &=& SIDE_B \\
\overline{DE} &=& HEIGHT_B \\
\overline{BC} &=& x
\end{eqnarray}
What is the value of x
?
\overline{AB} : \overline{BC} = \dfrac{SIDE_A}{x}
\overline{AD} : \overline{DE} = \dfrac{SIDE_A + SIDE_B}{HEIGHT_B}
= fraction(SIDE_A + SIDE_B, HEIGHT_B)
= fractionReduce(SIDE_A + SIDE_B, HEIGHT_B)
\dfrac{SIDE_A}{x} = fractionReduce(SIDE_A + SIDE_B, HEIGHT_B)
SIDE_A \times HEIGHT_B / GCD
= (SIDE_A + SIDE_B) / GCD \times x
SIDE_A * HEIGHT_B / GCD = coefficient((SIDE_A + SIDE_B) / GCD)x
x = fractionReduce(SIDE_A * HEIGHT_B, SIDE_A + SIDE_B)
Given that:
\quad\begin{eqnarray}
\overline{AB} &=& SIDE_A \\
\overline{BC} &=& HEIGHT_A \\
\overline{DE} &=& HEIGHT_B \\
\overline{BD} &=& x
\end{eqnarray}
What is the value of x
?
\overline{AB} : \overline{BC} = fraction(SIDE_A, HEIGHT_A)
= fractionReduce(SIDE_A, HEIGHT_A)
\overline{AD} : \overline{DE} = \dfrac{SIDE_A + x}{HEIGHT_B}
\dfrac{SIDE_A + x}{HEIGHT_B} = fractionReduce(SIDE_A, HEIGHT_A)
HEIGHT_A / GCD \times (
SIDE_A + x
)
= HEIGHT_B \times SIDE_A / GCD
HEIGHT_A * SIDE_A / GCD + coefficient(HEIGHT_A / GCD)x = HEIGHT_B * SIDE_A / GCD
coefficient(HEIGHT_A / GCD)x = (HEIGHT_B * SIDE_A - HEIGHT_A * SIDE_A) / GCD
x = fractionReduce(HEIGHT_B * SIDE_A - HEIGHT_A * SIDE_A, HEIGHT_A)
Given that:
\quad\begin{eqnarray}
\overline{AB} &=& SIDE_A \\
\overline{BC} &=& HEIGHT_A \\
\overline{BD} &=& SIDE_B \\
\overline{DE} &=& x
\end{eqnarray}
What is the value of x
?
\overline{AB} : \overline{BC} = fraction(SIDE_A, HEIGHT_A)
= fractionReduce(SIDE_A, HEIGHT_A)
\overline{AD} : \overline{DE} = \dfrac{SIDE_A + SIDE_B}{x}
= \dfrac{SIDE_A + SIDE_B}{x}
fractionReduce(SIDE_A, HEIGHT_A) = \dfrac{SIDE_A + SIDE_B}{x}
SIDE_A / GCD \times x =
HEIGHT_A / GCD \times
SIDE_A + SIDE_B
coefficient(SIDE_A / GCD)x = HEIGHT_A * (SIDE_A + SIDE_B) / GCD
x = fraction(HEIGHT_A * (SIDE_A + SIDE_B) / GCD, SIDE_A / GCD)
= fractionReduce(HEIGHT_A * (SIDE_A + SIDE_B), SIDE_A)
\triangle ABC
and \triangle ADE
both have a right angle and share \angle BAC
.
Therefore \triangle ABC
and \triangle ADE
are similar triangles.
Therefore, the ratio \overline{AB} : \overline{BC}
is equal to the ratio \overline{AD} : \overline{DE}
.