Triangle A_NAME
is similar to triangle B_NAME
.
Solve for X
.
X =
Similar triangles have proportional sides.
Therefore, we can set up equivalent proportions and solve for X
.
\dfrac{\red{B_LABELS[SOLUTION_INDEX]}}{\blue{A_SIDES[SOLUTION_INDEX]}} = \dfrac{\red{B_LABELS[PROP_INDEX]}}{\blue{A_SIDES[PROP_INDEX]}}
Note: As each corresponding \dfrac{\red{side}}{\blue{side}}
proportion is equivalent, you could use the other sides (i.e., \dfrac{\red{B_LABELS[SOLUTION_INDEX]}}{\blue{A_SIDES[SOLUTION_INDEX]}} = \dfrac{\red{B_LABELS[ALTERNATE_INDEX]}}{\blue{A_SIDES[ALTERNATE_INDEX]}}
)
Reduce the proportion on the right hand side.
\dfrac{\red{B_LABELS[SOLUTION_INDEX]}}{\blue{A_SIDES[SOLUTION_INDEX]}} = \cancel{\dfrac{\red{B_LABELS[PROP_INDEX]}}{\blue{A_SIDES[PROP_INDEX]}}}{\green{fractionReduce(B_LABELS[PROP_INDEX], A_SIDES[PROP_INDEX])}}
Multiply each side by A_SIDES[SOLUTION_INDEX]
and simplify.
\cancel{A_SIDES[SOLUTION_INDEX]} \times \dfrac{\red{B_LABELS[SOLUTION_INDEX]}}{\cancel{\blue{A_SIDES[SOLUTION_INDEX]}}} = \green{fractionReduce(B_LABELS[PROP_INDEX], A_SIDES[PROP_INDEX])} \times A_SIDES[SOLUTION_INDEX]
\red{X}
is equal to SOLUTION
.