Determine how many solutions exist for the system of equations.
\color{BLUE}{EQUATIONS[0]}
\color{GREEN}{EQUATIONS[1]}
Convert both equations to slope-intercept form:
\color{BLUEGREEN}{EQUATIONS[INDEX]}
\color{BLUEGREEN}{y = expr(["+", ["*", AB_VALS[INDEX].a, "x"], AB_VALS[INDEX].b])}
expr(["*", -AB_VALS[INDEX].a, "x"])\color{PINK}{SIGNS_1[INDEX]expr(["*", abs( AB_VALS[INDEX].a ), "x"])} + y = AB_VALS[INDEX].b\color{PINK}{SIGNS_1[INDEX]expr(["*", abs( AB_VALS[INDEX].a ), "x"])}
y = AB_VALS[INDEX].bSIGNS_1[INDEX]expr(["*", abs( AB_VALS[INDEX].a ), "x"])
\color{BLUEGREEN}{y = expr(["+", ["*", AB_VALS[INDEX].a, "x"], AB_VALS[INDEX].b])}
expr(["*", -AB_VALS[INDEX].a * MULT[INDEX], "x"])\color{PINK}{SIGNS_2[INDEX]expr(["*", abs( AB_VALS[INDEX].a * MULT[INDEX] ), "x"])} + expr(["*", MULT[INDEX], "y"]) = AB_VALS[INDEX].b * MULT[INDEX]\color{PINK}{SIGNS_2[INDEX]expr(["*", abs( AB_VALS[INDEX].a * MULT[INDEX] ), "x"])}
expr(["*", MULT[INDEX], "y"]) = AB_VALS[INDEX].b * MULT[INDEX]SIGNS_2[INDEX]expr(["*", abs( AB_VALS[INDEX].a * MULT[INDEX] ), "x"])
y = AB_VALS[INDEX].bSIGNS_1[INDEX]expr(["*", abs( AB_VALS[INDEX].a ), "x"])
\color{BLUEGREEN}{y = expr(["+", ["*", AB_VALS[INDEX].a, "x"], AB_VALS[INDEX].b])}
Just by looking at both equations in slope-intercept form, what can you determine?
\color{BLUE}{y = expr(["+", ["*", AB_VALS[0].a, "x"], AB_VALS[0].b])}
\color{GREEN}{y = expr(["+", ["*", AB_VALS[1].a, "x"], AB_VALS[1].b])}
The linear equations have different slopes.
When two equations have different slopes, the lines will intersect once with one solution.
Both equations have the same slope and the same y-intercept, which means the lines would completely overlap.
Since any solution of \color{BLUE}{EQUATIONS[0]}
is also a solution of \color{GREEN}{EQUATIONS[1]}
, there are infinitely many solutions.
Both equations have the same slope with different y-intercepts. This means the equations are parallel.
Parallel lines never intersect, thus there are NO SOLUTIONS.