Simplify the following expression and state the condition under which the simplification is valid.
\dfrac{NUMERATOR}{DENOMINATOR}
X \neq \space
X \neq \space
First factor out the greatest common factors in the numerator and in the denominator.
\qquad \dfrac
{NUM_FACTOR(NUMERATOR.divide(NUM_FACTOR))}
{DEN_FACTOR(DENOMINATOR.divide(DEN_FACTOR))}
\qquad -
\dfrac{NUM_FACTORa}{DEN_FACTORa} \cdot
\dfrac{NUMERATOR.divide(NUM_FACTOR)}{DENOMINATOR.divide(DEN_FACTOR)}
Simplify:
\qquad -
\dfrac{NUM_FACTOR2}{DEN_FACTOR2} \cdot
NUM_FACTOR2 \cdot
\dfrac{NUMERATOR.divide(NUM_FACTOR)}{DENOMINATOR.divide(DEN_FACTOR)}
Since we are dividing by X
, we must remember that X \neq 0
.
Next factor the numerator and denominator.
\qquad -
\dfrac{NUM_FACTOR2}{DEN_FACTOR2} \cdot
NUM_FACTOR2 \cdot
\dfrac{(FACTOR)(TERM1)}{(FACTOR)(TERM3)}
Assuming X \neq -A
, we can cancel the FACTOR
.
\qquad -
\dfrac{NUM_FACTOR2}{DEN_FACTOR2} \cdot
NUM_FACTOR2 \cdot
\dfrac{TERM1}{TERM3}
Therefore:
\qquad \dfrac{
TERM1.multiply(-1)
TERM1
-NUM_FACTOR2(TERM1)}{
TERM3
DEN_FACTOR2(TERM3)}
,
X \neq -A
, X \neq 0