shuffle(randFromArray([[3,4], [6,8], [5,12], [7, 24], [8, 15], [10, 24], [12,16]])) BC sqrt(AC * AC + BC * BC) randFromArray([ "ABC", "BAC" ]) (ANGLE.substring(0,1) + ANGLE.substring(2)) (function(){ if ( OPPOSITE_NAME === "AC" ){ return AC; } else if ( OPPOSITE_NAME === "BC" ){ return CB; } return AB; })() "AB" AB fraction(AB, OPPOSITE_VALUE) fraction(OPPOSITE_VALUE, AB) AB / OPPOSITE_VALUE

\overline{AC} is AC units long

\overline{BC} is BC units long

\overline{AB} is AB units long

What is \csc(\angle ANGLE)?

betterTriangle(BC, AC, "A", "B", "C", BC, AC, AB); path([[ 0.4, 0 ], [ 0.4, 0.4 ], [ 0, 0.4 ]]);
CSC

\csc(\angle ANGLE) = \dfrac{1}{\sin(\angle ANGLE)}

How can we find \sin(\angle ANGLE)?

SOH CAH TOA

Sin = Opposite over Hypotenuse

Opposite = \overline{OPPOSITE_NAME} = OPPOSITE_VALUE

Hypotenuse = \overline{HYPOTENUSE_NAME} = AB

\sin(\angle ANGLE) = SIMPLE_SIN

\csc(\angle ANGLE) = \dfrac{1}{\sin(\angle ANGLE)} = SIMPLE_CSC

shuffle(randFromArray([[3,4], [6,8], [5,12], [7, 24], [8, 15], [10, 24], [12,16]])) BC sqrt(AC * AC + BC * BC) randFromArray([ "ABC", "BAC" ]) "AB" AB ANGLE.substring(1) (function(){ if ( ADJACENT_NAME === "AC" ){ return AC; } else if ( ADJACENT_NAME === "BC" ){ return BC; } return AB; })() fraction(ADJACENT_VALUE, AB) fraction(AB, ADJACENT_VALUE) AB / ADJACENT_VALUE

\overline{AC} is AC units long

\overline{BC} is BC units long

\overline{AB} is AB units long

What is \sec(\angle ANGLE)?

betterTriangle(BC, AC, "A", "B", "C", BC, AC, AB); path([[ 0.4, 0 ], [ 0.4, 0.4 ], [ 0, 0.4 ]]);
SEC

\sec(\angle ANGLE) = \dfrac{1}{\cos(\angle ANGLE)}

How can we find \cos(\angle ANGLE)?

SOH CAH TOA

Cosine = Adjacent over Hypotenuse

Adjacent = \overline{ADJACENT_NAME} = ADJACENT_VALUE

Hypotenuse = \overline{HYPOTENUSE_NAME} = AB

\cos(\angle ANGLE) = SIMPLE_COS

\sec(\angle ANGLE) = \dfrac{1}{\cos(\angle ANGLE)} = SIMPLE_SEC

shuffle(randFromArray([[3,4], [6,8], [5,12], [7, 24], [8, 15], [10, 24], [12,16]])) BC sqrt(AC * AC + BC * BC) randFromArray([ "ABC", "BAC" ]) (ANGLE.substring(0,1) + ANGLE.substring(2)) (function(){ if ( OPPOSITE_NAME === "AC" ){ return AC; } else if ( OPPOSITE_NAME === "BC" ){ return CB; } return AB; })() ANGLE.substring(1) (function(){ if ( ADJACENT_NAME === "AC" ){ return AC; } else if ( ADJACENT_NAME === "BC" ){ return BC; } return AB; })() fraction(OPPOSITE_VALUE, ADJACENT_VALUE) fraction(ADJACENT_VALUE, OPPOSITE_VALUE) ADJACENT_VALUE / OPPOSITE_VALUE

\overline{AC} is AC units long

\overline{BC} is BC units long

\overline{AB} is AB units long

What is \cot(\angle ANGLE)?

betterTriangle(BC, AC, "A", "B", "C", BC, AC, AB); path([[ 0.4, 0 ], [ 0.4, 0.4 ], [ 0, 0.4 ]]);
COT

\cot(\angle ANGLE) = \dfrac{1}{\tan(\angle ANGLE)}

How can we find \tan(\angle ANGLE)?

SOH CAH TOA

Tangent = Opposite over Adjacent

Opposite = \overline{OPPOSITE_NAME} = OPPOSITE_VALUE

Adjacent = \overline{ADJACENT_NAME} = ADJACENT_VALUE

\tan(\angle ANGLE) = SIMPLE_TAN

\cot(\angle ANGLE) = \dfrac{1}{\tan(\angle ANGLE)} = SIMPLE_COT