Solve for x
:
A\sqrt{x} + B = C\sqrt{x} + D
SOLUTION
Subtract C\sqrt{x}
from both sides:
(A\sqrt{x} + B) - C\sqrt{x} = (C\sqrt{x} + D) - C\sqrt{x}
A - C\sqrt{x} + B = D
Subtract abs(B)
from both sides:
Add abs(B)
to both sides:
(A - C\sqrt{x} + B) + -B = D + -B
A - C\sqrt{x} = D - B
Divide both sides by A - C
.
\frac{A - C\sqrt{x}}{A - C} = \frac{D - B}{A - C}
Simplify.
\sqrt{x} = SIMPLIFIED
Square both sides.
\sqrt{x} \cdot \sqrt{x} = SIMPLIFIED \cdot SIMPLIFIED
SOLUTION
The principal root of a number cannot be negative. So, there is no solution.
Subtract A\sqrt{x}
from both sides:
(A\sqrt{x} + B) - A\sqrt{x} = (C\sqrt{x} + D) - A\sqrt{x}
B = C - A\sqrt{x} + D
Subtract abs(D)
from both sides:
Add abs(D)
to both sides:
B + -D = (C - A\sqrt{x} + D) + -D
B - D = C - A\sqrt{x}
Divide both sides by C - A
.
\frac{B - D}{C - A} = \frac{C - A\sqrt{x}}{C - A}
Simplify.
SIMPLIFIED = \sqrt{x}
Square both sides.
SIMPLIFIED \cdot SIMPLIFIED = \sqrt{x} \cdot \sqrt{x}
SOLUTION
The principal root of a number cannot be negative. So, there is no solution.