In the right triangle shown, AC = AC
and
BC = BC
.
What is AB
?
We want to find c
; let a = BC
and b = AC
.
\begin{align}
c^2 &= BC^2 + AC^2 \\
c^2 &= BC * BC + AC * AC \\
c^2 &= AB2 \\
c &= \sqrt{AB2}
\end{align}
Simplifying the radical gives c = formattedSquareRootOf(AB2).
So c = formattedSquareRootOf(AB2).
The radical cannot be simplified, so c = 1\sqrt{AB2}
or just \sqrt{AB2}
.
In the right triangle shown, bside = AC
and
AB = AB
.
What is aside
?
We want to find a
; let b = AC
and c = AB
.
So a^2 = c^2 - b^2
\begin{align}
a^2 &= AB^2 - AC^2 \\
a^2 &= AB * AB - AC * AC \\
a^2 &= BC2 \\
a &= \sqrt{BC2}
\end{align}
Simplifying the radical gives a = formattedSquareRootOf(BC2).
So aside = formattedSquareRootOf(BC2).
The radical cannot be simplified, so aside = 1\sqrt{BC2}
or just \sqrt{BC2}
.
We know a^2 + b^2 = c^2
.