(\sin^2 \theta + \cos^2 \theta)(FUNC)
= \; ?
\dfrac{FUNC}
{\sin^2 \theta + \cos^2 \theta} = \; ?
FUNC
op
We can use the identity
\blue{\sin^2 \theta} + \orange{\cos^2 \theta}
= 1
to simplify this expression.
We can see why this is true by using the Pythagorean Theorem.
So, (\sin^2 \theta + \cos^2 \theta)(FUNC)
= 1 \cdot FUNC = FUNC
So, \dfrac{FUNC}
{\sin^2 \theta + \cos^2 \theta} =
\dfrac{FUNC}{1} = FUNC
(IDENT)(FUNC) = \; ?
\dfrac{IDENT}{FUNC}
= \; ?
ANS
op
We can use the identity
\blue{\sin^2 \theta} + \orange{\cos^2 \theta}
= 1
to simplify this expression.
We can see why this is true by using the Pythagorean Theorem.
So, IDENT = EQUIV
Plugging into our expression, we get
\qquad
(IDENT)(FUNC)
=
(EQUIV)(FUNC)
\qquad
\dfrac{IDENT}{FUNC}
=
\dfrac{EQUIV}{FUNC}
To make simplifying easier, let's put everything
in terms of \sin
and \cos
.
FUNC = FUNC_SIMP
,
so we can plug that in to get
\qquad
(EQUIV)(FUNC)
=
\left(EQUIV\right)
\left(FUNC_SIMP\right)
\qquad
\dfrac{EQUIV}{FUNC}
=
\dfrac{EQUIV}{FUNC_SIMP}
ANS
.
(IDENT)(FUNC) = \; ?
\dfrac{IDENT}{FUNC}
= \; ?
ANS
op
We can derive a useful identity from
\blue{\sin^2 \theta} + \orange{\cos^2 \theta}
= 1
to simplify this expression.
We can see why this identity is true by using the Pythagorean Theorem.
Dividing both sides by \cos^2\theta
, we get
\qquad \dfrac{\sin^2\theta}{\cos^2\theta}
+ \dfrac{\cos^2\theta}{\cos^2\theta}
= \dfrac{1}{\cos^2\theta}
\qquad \tan^2\theta + 1 = \sec^2\theta
\qquad IDENT
= EQUIV
Plugging into our expression, we get
\qquad
(IDENT)(FUNC)
=
\left(EQUIV\right)
\left(FUNC\right)
\qquad
\dfrac{IDENT}{FUNC}
=
\dfrac{EQUIV}{FUNC}
To make simplifying easier, let's put everything
in terms of \sin
and \cos
.
We know EQUIV
= EQUIV_SIMP
and FUNC = FUNC_SIMP
,
so we can substitute to get
\qquad
\left(EQUIV\right)
\left(FUNC\right)
=
\left(EQUIV_SIMP\right)
\left(FUNC_SIMP\right)
\qquad
\dfrac{EQUIV}{FUNC}
=
\dfrac{EQUIV_SIMP}{FUNC_SIMP}
To make simplifying easier, let's put everything
in terms of \sin
and \cos
.
We know EQUIV
= EQUIV_SIMP
, so we can substitute
to get
\qquad
\left(EQUIV\right)
\left(FUNC\right)
=
\left(EQUIV_SIMP\right)
\left(FUNC_SIMP\right)
\qquad
\dfrac{EQUIV}{FUNC}
=
\dfrac{EQUIV_SIMP}{FUNC_SIMP}
ANS_SIMP = ANS
.
ANS
.
(IDENT)(FUNC) = \; ?
\dfrac{IDENT}{FUNC}
= \; ?
ANS
op
We can derive a useful identity from
\blue{\sin^2 \theta} + \orange{\cos^2 \theta}
= 1
to simplify this expression.
We can see why this identity is true by using the Pythagorean Theorem.
Dividing both sides by \sin^2\theta
, we get
\qquad \dfrac{\sin^2\theta}{\sin^2\theta}
+ \dfrac{\cos^2\theta}{\sin^2\theta}
= \dfrac{1}{\sin^2\theta}
\qquad 1 + \cot^2\theta = \csc^2\theta
\qquad IDENT
= EQUIV
Plugging into our expression, we get
\qquad
(IDENT)(FUNC)
=
\left(EQUIV\right)
\left(FUNC\right)
\qquad
\dfrac{IDENT}{FUNC}
=
\dfrac{EQUIV}{FUNC}
To make simplifying easier, let's put everything
in terms of \sin
and \cos
.
We know EQUIV
= EQUIV_SIMP
and FUNC = FUNC_SIMP
,
so we can substitute to get
\qquad
\left(EQUIV\right)
\left(FUNC\right)
=
\left(EQUIV_SIMP\right)
\left(FUNC_SIMP\right)
\qquad
\dfrac{EQUIV}{FUNC}
=
\dfrac{EQUIV_SIMP}{FUNC_SIMP}
To make simplifying easier, let's put everything
in terms of \sin
and \cos
.
We know EQUIV
= EQUIV_SIMP
, so we can substitute
to get
\qquad
\left(EQUIV\right)
\left(FUNC\right)
=
\left(EQUIV_SIMP\right)
\left(FUNC_SIMP\right)
\qquad
\dfrac{EQUIV}{FUNC}
=
\dfrac{EQUIV_SIMP}{FUNC_SIMP}
ANS_SIMP = ANS
.
ANS
.