KhanUtil.shuffle([ "blue", "green", "red", "purple", "pink" ])
(function() {
var array = [];
var ds = [];
var used = {};
var arrLength = randRange(4, 5);
while ( array.length < arrLength ) {
var d = randFromArray(denominators);
var n = randRange(1, d - 1);
var ns = localeToFixed(n / d, 3);
if (!used[ns]) {
var gcd = getGCD(n, d);
array.push([ n / d,
(n / gcd),
(d / gcd),
fractionReduce(n, d),
COLORS[array.length]
]);
ds.push( d/gcd );
used[ ns ] = true;
}
}
return array;
})()
$.map(NUMS, function(el) {
return el[2];
})
getLCM.apply(KhanUtil, DENOMS)
$.map(NUMS, function(el) {
return el[1] * LCD / el[2];
})
$.map(NUMS, function(el) {
return el[3];
}).join(",")
$.map(NUMS, function(el) {
return "\\" + el[4] + "{" + el[3] + "}";
}).join(",")
$.extend(true, [], NUMS).sort(function(a, b) {
return a[0] - b[0];
})
$.map(NUMS_SORT, function(el) {
return el[3];
}).join(",")
$.map(NUMS_SORT, function(el) {
return "\\" + el[4] + "{" + (el[1] * LCD / el[2]) + "}";
}).join("<")
$.map(NUMS_SORT, function(el) {
return "\\" + el[4] + "{\\dfrac{" + (el[1] * LCD / el[2]) + "}{" + LCD + "}}";
}).join(",\\ ")
$.map(NUMS, function(el) {
return "\\" + el[4] + "{\\dfrac{" + (el[1] * LCD / el[2]) + "}{" + LCD + "}}";
})
$.map(NUMS_SORT, function(el) {
return "\\" + el[4] + "{" + el[3] + "}";
}).join(",\\ ")
createSorter()
Order the following fractions from least to greatest:
SORTER.init( "sortable" )
SORTER.getContent()
if (SORTER.hasAttempted) {
return guess.join(",") === FRACTION_SORT_TEX;
} else {
return "";
}
SORTER.setContent( guess );
Let's change the fractions to have a common denominator of LCD
:
\qquad
\NUM[4]{NUM[3]} \times
\dfrac{LCD / NUM[2]}{LCD / NUM[2]} =
\NUM[4]{\dfrac{NUMS_LCD[I]}{LCD}}
Now that our fractions have the same denominator, we can order their numerators from least to greatest:
\qquad NUMS_SORT_COLOR
The fractions listed in order from least to greatest are as follows:
\qquad FRACTION_LCD_SORT_COLOR
.
Finally, let's convert the fractions back to their original form:
\qquad NUMS_SORT_TEX_COLOR
.