Evaluate the following expression.
A + (B \times negParens(C))
A + B \times negParens(C)
A + B * C
= A + (B * C)
= A + B * C
= A + B * C
A \times (B + negParens(C))
A * (B + C)
= A \times B + C
= A * (B + C)
A + \left(\dfrac{B * C}{C}\right)
A + \dfrac{B * C}{C}
A + B
= A + (B)
= A + B
= A + B
\dfrac{A * (B + C)}{B + C}
A
= \dfrac{A * (B + C)}{B + C }
= A
(A + (B - C \times negParens(D))) \times negParens(E)
(A + (B - (C * D))) * E
= (A + (B - C * D)) \times negParens(E)
= (A + (B - (C * D))) \times negParens(E)
= (A + B - (C * D)) \times negParens(E)
= (A + (B - (C * D))) \times negParens(E)
= A + (B - (C * D)) \times negParens(E)
= (A + (B - (C * D))) * E
A + (B + C \times negParens(D)) \times negParens(E)
A + ((B + (C * D)) * E)
= A + (B + C * D) \times negParens(E)
= A + (B + C * D) \times negParens(E)
= A + (B + C * D) * E
= A + (B + C * D) * E
A + B \times negParens(C) + \dfrac{(D * E)}{E}
A + B * C + D
= A + B \times negParens(C) + D
= A + B * C + D
= A + B * C + D
= A + B * C + D
A \times negParens(B) + C \times \dfrac{(D * E)}{E}
(A * B) + (C * D)
= A \times negParens(B) + C \times negParens(D)
= A * B + C \times negParens(D)
= A * B + C * D
= A * B + C * D
(A + B \times negParens(D)) - C \times negParens(E)
A + B \times negParens(D) - C \times negParens(E)
A + B * D - C * E
= (A + B * D) - C \times negParens(E)
= A + B * D - C \times negParens(E)
= A + B * D - C * E
= A + B * D - C * E
= A + B * D - C * E
A - negParens(B)^2
A - B * B
= A - B * B
= A - B * B
A - (B + C)^2
A - (B + C) * (B + C)
= A - (B + C)^2
= A - (B + C) * (B + C)
= A - (B + C) * (B + C)