Solve the following expression and give your answer as a decimal.
                        NUMS[0] \times NUMS[1]  \times NUMS[2] = {?}
                    
\qquadNUMS[i] = DECIMALS[i]
\qquad
                            NUMS[i] = fraction(round(NUMERATORS[i] * 100 / DENOMINATORS[i]), 100) = DECIMALS[i]
                        
Now we have:
\qquad
                            DECIMALS[0] \times DECIMALS[1]  \times DECIMALS[2] = {?}
                        
\qquad
                        DECIMALS[0] \times DECIMALS[1]  \times DECIMALS[2] = SOLUTION
                    
Solve the following expression and give your answer as a percentage.
                        NUMS[0] \times NUMS[1]  \times NUMS[2] = {?}
                    
\qquadNUMS[i] \times 100\% = roundTo(2, 100 * DECIMALS[i])\%
Now we have:
\qquad
                            roundTo(2, 100 * DECIMALS[0])\% \times roundTo(2, 100 * DECIMALS[1])\%
                             \times roundTo(2, 100 * DECIMALS[2])\% = {?}
                        
\qquad
                        roundTo(2, 100 * DECIMALS[0])\% \times roundTo(2, 100 * DECIMALS[1])\%
                             \times roundTo(2, 100 * DECIMALS[2])\% = 100 * SOLUTION \%
                    
Solve the following expression and give your answer as a fraction.
                        NUMS[0] \times NUMS[1]  \times NUMS[2] = {?}
                    
\qquad
                        NUMS[i] = fraction(roundTo(i, POWER[i] * DECIMALS[i]), POWER[i])
                         = fraction(SIMPLE_NUMERATORS[i], SIMPLE_DENOMINATORS[i])
                    
Now we have:
\qquad
                            fraction(SIMPLE_NUMERATORS[0], SIMPLE_DENOMINATORS[0]) \times
                            fraction(SIMPLE_NUMERATORS[1], SIMPLE_DENOMINATORS[1])
                             \times fraction(SIMPLE_NUMERATORS[2], SIMPLE_DENOMINATORS[2]) = {?}
                        
\qquad \phantom{
                        fraction(SIMPLE_NUMERATORS[0], SIMPLE_DENOMINATORS[0]) \times
                        fraction(SIMPLE_NUMERATORS[1], SIMPLE_DENOMINATORS[1])
                         \times fraction(SIMPLE_NUMERATORS[2], SIMPLE_DENOMINATORS[2])} =
                        \dfrac{SIMPLE_NUMERATORS[0] \times SIMPLE_NUMERATORS[1]
                        \times SIMPLE_NUMERATORS[2]}
                        {SIMPLE_DENOMINATORS[0] \times SIMPLE_DENOMINATORS[1]
                        \times SIMPLE_DENOMINATORS[2]}
                    
\qquad \phantom{
                        fraction(SIMPLE_NUMERATORS[0], SIMPLE_DENOMINATORS[0]) \times
                        fraction(SIMPLE_NUMERATORS[1], SIMPLE_DENOMINATORS[1])
                         \times fraction(SIMPLE_NUMERATORS[2], SIMPLE_DENOMINATORS[2])} =
                        fraction(NUMERSOL, DENOMSOL)
                         = fractionReduce(NUMERSOL, DENOMSOL)