Solve the following expression and give your answer as a decimal.
NUMS[0] \times NUMS[1] \times NUMS[2] = {?}
\qquadNUMS[i] = DECIMALS[i]
\qquad
NUMS[i] = fraction(round(NUMERATORS[i] * 100 / DENOMINATORS[i]), 100) = DECIMALS[i]
Now we have:
\qquad
DECIMALS[0] \times DECIMALS[1] \times DECIMALS[2] = {?}
\qquad
DECIMALS[0] \times DECIMALS[1] \times DECIMALS[2] = SOLUTION
Solve the following expression and give your answer as a percentage.
NUMS[0] \times NUMS[1] \times NUMS[2] = {?}
\qquadNUMS[i] \times 100\% = roundTo(2, 100 * DECIMALS[i])\%
Now we have:
\qquad
roundTo(2, 100 * DECIMALS[0])\% \times roundTo(2, 100 * DECIMALS[1])\%
\times roundTo(2, 100 * DECIMALS[2])\% = {?}
\qquad
roundTo(2, 100 * DECIMALS[0])\% \times roundTo(2, 100 * DECIMALS[1])\%
\times roundTo(2, 100 * DECIMALS[2])\% = 100 * SOLUTION \%
Solve the following expression and give your answer as a fraction.
NUMS[0] \times NUMS[1] \times NUMS[2] = {?}
\qquad
NUMS[i] = fraction(roundTo(i, POWER[i] * DECIMALS[i]), POWER[i])
= fraction(SIMPLE_NUMERATORS[i], SIMPLE_DENOMINATORS[i])
Now we have:
\qquad
fraction(SIMPLE_NUMERATORS[0], SIMPLE_DENOMINATORS[0]) \times
fraction(SIMPLE_NUMERATORS[1], SIMPLE_DENOMINATORS[1])
\times fraction(SIMPLE_NUMERATORS[2], SIMPLE_DENOMINATORS[2]) = {?}
\qquad \phantom{
fraction(SIMPLE_NUMERATORS[0], SIMPLE_DENOMINATORS[0]) \times
fraction(SIMPLE_NUMERATORS[1], SIMPLE_DENOMINATORS[1])
\times fraction(SIMPLE_NUMERATORS[2], SIMPLE_DENOMINATORS[2])} =
\dfrac{SIMPLE_NUMERATORS[0] \times SIMPLE_NUMERATORS[1]
\times SIMPLE_NUMERATORS[2]}
{SIMPLE_DENOMINATORS[0] \times SIMPLE_DENOMINATORS[1]
\times SIMPLE_DENOMINATORS[2]}
\qquad \phantom{
fraction(SIMPLE_NUMERATORS[0], SIMPLE_DENOMINATORS[0]) \times
fraction(SIMPLE_NUMERATORS[1], SIMPLE_DENOMINATORS[1])
\times fraction(SIMPLE_NUMERATORS[2], SIMPLE_DENOMINATORS[2])} =
fraction(NUMERSOL, DENOMSOL)
= fractionReduce(NUMERSOL, DENOMSOL)