Multiply and simplify the following complex numbers:
(A_REP) \cdot (B_REP)
Complex numbers are multiplied like any two binomials.
First use the distributive property:
\qquad (A_REP) \cdot (B_REP) =
\qquad \qquad
(A_REAL_COLORED \cdot B_REAL_COLORED) + (A_REAL_COLORED \cdot B_IMAG_COLORED) +
(A_IMAG_COLORED \cdot B_REAL_COLORED) + (A_IMAG_COLORED \cdot B_IMAG_COLORED)
Then simplify the terms:
\qquad (A_REAL * B_REAL) + (coefficient(A_REAL * B_IMAG)i) +
(coefficient(A_IMAG * B_REAL)i) + (coefficient(A_IMAG * B_IMAG)i^2)
Imaginary unit multiples can be grouped together.
\qquad
A_REAL * B_REAL + (A_REAL * B_IMAG + A_IMAG * B_REAL)i + coefficient(A_IMAG * B_IMAG) i^2
After we plug in i^2 = -1
, the result becomes
A_REAL * B_REAL + (A_REAL * B_IMAG + A_IMAG * B_REAL)i - negParens( A_IMAG * B_IMAG )
The result is simplified:
(A_REAL * B_REAL - A_IMAG * B_IMAG) + (ANSWER_IMAGi) = complexNumber( ANSWER_REAL, ANSWER_IMAG)