X \neq \space
X \neq \space
Simplify the following expression and state the conditions under which the simplification is valid.
You can assume that X \neq 0
.
\qquad
\dfrac{NUMERATORS[ORDER[0]]}{DENOMINATORS[ORDER[1]]} \times
\dfrac{NUMERATORS[1 - ORDER[0]]}{DENOMINATORS[1 - ORDER[1]]}
\dfrac{NUMERATORS[ORDER[0]]}{DENOMINATORS[ORDER[1]]} \div
\dfrac{DENOMINATORS[1- ORDER[1]]}{NUMERATORS[1 - ORDER[0]]}
Dividing by an expression is the same as multiplying by its inverse.
\qquad
\dfrac{NUMERATORS[ORDER[0]]}{DENOMINATORS[ORDER[1]]} \times
\dfrac{NUMERATORS[1 - ORDER[0]]}{DENOMINATORS[1 - ORDER[1]]}
First factor out any common factors.
\qquad
\dfrac{NUMERATORS[ORDER[0]].toStringFactored()}{DENOMINATORS[ORDER[1]].toStringFactored()} \times
\dfrac{NUMERATORS[1 - ORDER[0]].toStringFactored()}{DENOMINATORS[1 - ORDER[1]].toStringFactored()}
Then factor the quadratic expressions.
\qquad \dfrac
{NUMERATORS[1].toStringFactored()NUMER_QUADRATIC}
{DENOMINATORS[1].toStringFactored()DENOM_QUADRATIC}
\times \dfrac
{NUMER_QUADRATICNUMERATORS[1].toStringFactored()}
{DENOM_QUADRATICDENOMINATORS[1].toStringFactored()}
Then multiply the two numerators and multiply the two denominators.
\qquad \dfrac
{NUMERATORS[1].toStringFactored(true) \times NUMER_QUADRATIC
NUMER_QUADRATIC \times NUMERATORS[1].toStringFactored(true)}
{DENOMINATORS[1].toStringFactored(true) \times DENOM_QUADRATIC
DENOM_QUADRATIC \times DENOMINATORS[1].toStringFactored(true)}
\qquad = \dfrac
{getProduct(NUMER_PRODUCT[0], NUMER_PRODUCT[1])}
{getProduct(DENOM_PRODUCT[0], DENOM_PRODUCT[1])}
Notice that (TERM_A)
and (TERM_B)
appear in both the numerator and denominator so we can cancel them.
\qquad = \dfrac
{getProduct(NUMER_PRODUCT[0], NUMER_PRODUCT[1], CANCEL_ORDER[0].slice(0, 1))}
{getProduct(DENOM_PRODUCT[0], DENOM_PRODUCT[1], CANCEL_ORDER[1].slice(0, 1))}
TERM_A
, so TERM_A \neq 0
.X \neq -A
.\qquad \dfrac
{getProduct(NUMER_PRODUCT[0], NUMER_PRODUCT[1], CANCEL_ORDER[0])}
{getProduct(DENOM_PRODUCT[0], DENOM_PRODUCT[1], CANCEL_ORDER[1])}
TERM_B
, so TERM_B \neq 0
.X \neq -B
.\qquad \dfrac
{NUMERSOL.multiply(COMMON_FACTOR).toStringFactored()}
{DENOMSOL.multiply(COMMON_FACTOR).toStringFactored()}
\dfrac{NUMERSOL.toStringFactored()}{DENOMSOL.toStringFactored()};
X \neq -A; X \neq -B