Simplify the following expression and state the condition under which the simplification is valid.
You can assume that X \neq 0
.
\dfrac{FRACTION1.numerator.string}{FRACTION1.denominator.string} \times
\dfrac{FRACTION2.numerator.string}{FRACTION2.denominator.string}
\dfrac{FRACTION1.numerator.string}{FRACTION1.denominator.string} \div
\dfrac{FRACTION2.denominator.string}{FRACTION2.numerator.string}
Dividing by an expression is the same as multiplying by its inverse.
\qquad
\dfrac{FRACTION1.numerator.string}{FRACTION1.denominator.string} \times
\dfrac{FRACTION2.numerator.string}{FRACTION2.denominator.string}
X \neq \space
-CONSTANT/COEFFICIENT
When multiplying fractions, we multiply the numerators and the denominators.
\qquad \dfrac{
(FRACTION1.numerator.string)
FRACTION1.numerator.string \times
(FRACTION2.numerator.string)
FRACTION2.numerator.string } {
(FRACTION1.denominator.string)
FRACTION1.denominator.string \times
(FRACTION2.denominator.string)
FRACTION2.denominator.string }
\qquad \dfrac
{FRACTION3.numerator[0]
\times FRACTION3.numerator[1](COMMON_TERM)}
{FRACTION3.denominator[0]
\times FRACTION3.denominator[1](COMMON_TERM)}
\qquad \dfrac{NUMERTERM(COMMON_TERM)}{DENOMTERM(COMMON_TERM)}
We can cancel the COMMON_TERM
so long as COMMON_TERM \neq 0
.
Therefore X \neq fraction(-CONSTANT, COEFFICIENT, true, true)
.
\qquad
\dfrac{NUMERTERM \cancel{(COMMON_TERM})}{DENOMTERM \cancel{(COMMON_TERM)}}
= writeExpressionFraction(NUMERTERM, DENOMTERM)
=
writeExpressionFraction(NUMERSOL, DENOMSOL)
NUMERSOL