Simplify the following expression:
\dfrac{FRACTION[0].numerator}{FRACTION[0].denominator} \times
\dfrac{FRACTION[1].numerator}{FRACTION[1].denominator}
Simplify the following expression:
\dfrac{FRACTION[0].numerator}{FRACTION[0].denominator} \div
\dfrac{FRACTION[1].denominator}{FRACTION[1].numerator}
Dividing by an expression is the same as multiplying by its inverse.
\dfrac{FRACTION[0].numerator}{FRACTION[0].denominator} \times
\dfrac{FRACTION[1].numerator}{FRACTION[1].denominator}
When multiplying fractions, we multiply the numerators and the denominators.
\qquad \dfrac{
(FRACTION[0].numerator)
FRACTION[0].numerator
\times FRACTION[1].numerator
}{
(FRACTION[0].denominator)
FRACTION[0].denominator
\times FRACTION[1].denominator}
\qquad \dfrac{NUMERPRODUCT}{DENOMPRODUCT}
Simplify:
\qquad \dfrac{NUMERSOL}{DENOMSOL}