randVar() new RationalExpression([ [randRangeWeighted(1, 8, 1, 0.25), X], [randRangeWeighted(-10, 10, 0, 0.25)]]) new RationalExpression([randRange(2, 10)]) new RationalExpression([randRange(2, 10)]) new RationalExpression([[randRange(2, 10), X]]) (function(){ if (rand(2)) { return [ { numerator: EXPR1, denominator: EXPR2 }, { numerator: EXPR3, denominator: EXPR4 } ]; } else { return [ { numerator: EXPR2, denominator: EXPR1 }, { numerator: EXPR4, denominator: EXPR3 } ]; } })() FRACTION[0].numerator.multiply(FRACTION[1].numerator) FRACTION[0].denominator.multiply(FRACTION[1].denominator) NUMERPRODUCT.getGCD(DENOMPRODUCT) NUMERPRODUCT.divide(FACTOR) DENOMPRODUCT.divide(FACTOR)

Simplify the following expression:

\dfrac{FRACTION[0].numerator}{FRACTION[0].denominator} \times \dfrac{FRACTION[1].numerator}{FRACTION[1].denominator}

Simplify the following expression:

\dfrac{FRACTION[0].numerator}{FRACTION[0].denominator} \div \dfrac{FRACTION[1].denominator}{FRACTION[1].numerator}

Dividing by an expression is the same as multiplying by its inverse.

\dfrac{FRACTION[0].numerator}{FRACTION[0].denominator} \times \dfrac{FRACTION[1].numerator}{FRACTION[1].denominator}

(NUMERSOL.toString())/(DENOMSOL.toString())
(NUMERSOL.toString())/(DENOMSOL.toStringFactored())
(NUMERSOL.toStringFactored())/(DENOMSOL.toString())
(NUMERSOL.toStringFactored())/(DENOMSOL.toStringFactored())

When multiplying fractions, we multiply the numerators and the denominators.

\qquad \dfrac{ (FRACTION[0].numerator) FRACTION[0].numerator \times FRACTION[1].numerator }{ (FRACTION[0].denominator) FRACTION[0].denominator \times FRACTION[1].denominator}

\qquad \dfrac{NUMERPRODUCT}{DENOMPRODUCT}

Simplify:

\qquad \dfrac{NUMERSOL}{DENOMSOL}