randVar()
randRangeWeighted(1, 8, 1, 0.25) randRangeWeighted(-10, 10, 0, 0.25) new RationalExpression([[DENOMCOEFF, X], [DENOMCONST]]) randRange(-10, 10) randRange(-8, 8) new RationalExpression([[NUMERCOEFF, X], [NUMERCONST]])
randRange(0, 1) ? [randRange(2, 10), 1] : [1, randRange(2, 10)] NUMERATOR.multiply(CONSTANT[0]) DENOMINATOR.multiply(CONSTANT[1]) NUMERPRODUCT.getGCD(DENOMPRODUCT) NUMERPRODUCT.divide(FACTOR) DENOMPRODUCT.divide(FACTOR)

Simplify the following expression:

\dfrac{NUMERATOR}{DENOMINATOR} \times fractionReduce(CONSTANT[0], CONSTANT[1])

Simplify the following expression:

\dfrac{NUMERATOR}{DENOMINATOR} \div fractionReduce(CONSTANT[1], CONSTANT[0])

Dividing by a number is the same as multiplying by its inverse.

\qquad \dfrac{NUMERATOR}{DENOMINATOR} \times \dfrac{CONSTANT[0]}{CONSTANT[1]}

(NUMERSOL.toString())/(DENOMSOL.toString())
(NUMERSOL.toString())/(DENOMSOL.toStringFactored())
(NUMERSOL.toStringFactored())/(DENOMSOL.toString())
(NUMERSOL.toStringFactored())/(DENOMSOL.toStringFactored())

When multiplying fractions, we multiply the numerators and the denominators.

\qquad \dfrac{(NUMERATOR) \times CONSTANT[0]}{(DENOMINATOR) \times CONSTANT[1]}

\qquad \dfrac{NUMERPRODUCT}{DENOMPRODUCT}

Simplify:

\qquad \dfrac{NUMERSOL}{DENOMSOL}