POINTS[ 1 ]
is the midpoint of \overline{SEG_TOTAL}
If:
\qquad SEG_1 = COEF_1x + CONST_1
and
\qquad SEG_2 = COEF_2x + CONST_2
Find SEG_TOTAL
.
A midpoint divides a segment into two segments with equal lengths.
\blue{SEG_1} = \green{SEG_2}
Substitute in the expressions that were given for each length:
\qquad \blue{COEF_1x + CONST_1} = \green{COEF_2x + CONST_2}
Solve for x
:
\qquad expr([ "*", COEF_1 - COEF_2, "x" ]) = CONST_2 - CONST_1
\qquad x = X
Substitute X
for x
in the expressions that were given for
SEG_1
and SEG_2
:
\qquad SEG_1 = COEF_1(\pink{X}) + CONST_1
\qquad SEG_2 = COEF_2(\pink{X}) + CONST_2
\qquad SEG_1 = COEF_1 * X + CONST_1
\qquad SEG_2 = COEF_2 * X + CONST_2
\qquad SEG_1 = COEF_1 * X + CONST_1
\qquad SEG_2 = COEF_2 * X + CONST_2
To find the length SEG_TOTAL
, add the lengths \blue{SEG_1}
and \green{SEG_2}
:
\qquad SEG_TOTAL = \blue{SEG_1} + \green{SEG_2}
\qquad SEG_TOTAL = \blue{COEF_1 * X + CONST_1} + \green{COEF_2 * X + CONST_2}
\qquad SEG_TOTAL = TOTAL