PRETTY_MAT_ID = printSimpleMatrix(MAT)
What is PRETTY_MAT_ID^{-1}
?
PRETTY_MAT_ID^{-1} = \frac{1}{det(PRETTY_MAT_ID)}adj(PRETTY_MAT_ID)
Find the determinant:
For any 2 \times 2
matrix printSimpleMatrix(HINT_MAT)
,
the determinant is matrix2x2DetHint(HINT_MAT)
.
det(PRETTY_MAT_ID) = matrix2x2DetHint(MAT) = \red{DET}
Find the adjugate:
For any 2 \times 2
matrix printSimpleMatrix(HINT_MAT)
,
the adjugate is printSimpleMatrix(HINT_MAT_ADJ)
.
adj(PRETTY_MAT_ID) = printSimpleMatrix(matrixAdj(MAT), KhanUtil.BLUE)
Now that we have both the determinant and the adjugate, we can compute the inverse.
PRETTY_MAT_ID^{-1} = \frac{1}{\red{DET}}
printSimpleMatrix(matrixAdj(MAT), KhanUtil.BLUE)
= PRETTY_SOLN_MAT
PRETTY_MAT_ID = printSimpleMatrix(MAT_2)
What is PRETTY_MAT_ID^{-1}
?
PRETTY_MAT_ID^{-1} = \frac{1}{det(PRETTY_MAT_ID)}adj(PRETTY_MAT_ID)
Find the determinant:
For any 2 \times 2
matrix printSimpleMatrix(HINT_MAT)
,
the determinant is matrix2x2DetHint(HINT_MAT)
.
det(PRETTY_MAT_ID) = matrix2x2DetHint(MAT_2) = \red{DET_2}
PRETTY_MAT_ID^{-1} = \frac{1}{\red{0}}adj(PRETTY_MAT_ID)
Since \frac{1}{0}
is undefined,
PRETTY_MAT_ID^{-1}
does not exist.
PRETTY_MAT_ID = printSimpleMatrix(MAT)
PRETTY_MAT_ID_2 = printSimpleMatrix(MAT_2)
PRETTY_MAT_ID_2 = printSimpleMatrix(MAT_2)
PRETTY_MAT_ID = printSimpleMatrix(MAT)
Which matrix is invertible? What is its inverse?
A matrix is invertible if its determinant is non-zero.
The determinant of a 2 \times 2
matrix printSimpleMatrix(HINT_MAT)
,
is matrix2x2DetHint(HINT_MAT)
.
det(PRETTY_MAT_ID) = matrix2x2DetHint(MAT) = \red{DET}
det(PRETTY_MAT_ID_2) = matrix2x2DetHint(MAT_2) = \red{DET_2}
det(PRETTY_MAT_ID_2) = matrix2x2DetHint(MAT_2) = \red{DET_2}
det(PRETTY_MAT_ID) = matrix2x2DetHint(MAT) = \red{DET}
Therefore, only matrix PRETTY_MAT_ID
is invertible.
PRETTY_MAT_ID^{-1} = \frac{1}{det(PRETTY_MAT_ID)}adj(PRETTY_MAT_ID)
Find the adjugate:
For any 2 \times 2
matrix printSimpleMatrix(HINT_MAT)
,
the adjugate is printSimpleMatrix(HINT_MAT_ADJ)
.
adj(PRETTY_MAT_ID) = printSimpleMatrix(matrixAdj(MAT), KhanUtil.BLUE)
Now that we have both the determinant and the adjugate, we can compute the inverse.
PRETTY_MAT_ID^{-1} = \frac{1}{\red{DET}}
printSimpleMatrix(matrixAdj(MAT), KhanUtil.BLUE)
= PRETTY_SOLN_MAT