f(x) = M_X + B
for all real numbers.
What is f^{-1}(x)
, the inverse of f(x)
?
X_OVER_M - B_OVER_M
M_X - B
M_X + B
B_X + M
M_OVER_X + B
X_OVER_M + B
X_OVER_M - B
X_OVER_M - M_OVER_B
X_OVER_M + B_OVER_M
X_OVER_NEG_M - B_OVER_M
X_OVER_NEG_M + B_OVER_M
f(x) = M_X + B
for all real numbers.
Write an expression for f^{-1}(x)
, the inverse of f(x)
.
f^{-1} =
x / M - B / M
y = f(x)
, so solving for x
in terms of y
gives x=f^{-1}(y)
f(x) = y = M_X + B
y + -B = M_X
Y_OVER_M - B_OVER_M = x
x = Y_OVER_M - B_OVER_M
So we know: f^{-1}(y) = Y_OVER_M - B_OVER_M
Rename y
to x
: f^{-1}(x) = X_OVER_M - B_OVER_M
Notice that f^{-1}(x)
is just f(x)
reflected across the line y = x
.