random() < 0.5 random() < 0.5 randFromArray([ "sin", "cos", "tan" ]) "\\" + FN + "^{-1}" "\\arc" + FN function( x, arc ) { return ( ( typeof arc === "undefined" ? ARC : arc ) ? FN_ARC : FN_INV ) + "\\left(" + x + "\\right)"; } [ 0, 1/2, sqrt(2)/2, sqrt(3)/2 ] [ 0, sqrt(3)/3, 1, sqrt(3) ] ( random() < 0.5 ? -1 : 1 ) * { sin: randFromArray( SIN_RANGE ), cos: randFromArray( SIN_RANGE ), tan: randFromArray( TAN_RANGE ) }[ FN ] { sin: asin, cos: acos, tan: atan }[ FN ]( X ) round( Y * 180 / PI ) KhanUtil.toFraction( Y / Math.PI, 0.001 ) function( n ) { var sign = n < 0 ? "-" : ""; n = abs( n ); var o = {}; o[ 1/2 ] = "\\frac{1}{2}"; o[ sqrt(2)/2 ] = "\\dfrac{\\sqrt{2}}{2}"; o[ sqrt(3)/2 ] = "\\dfrac{\\sqrt{3}}{2}"; o[ sqrt(3)/3 ] = "\\dfrac{\\sqrt{3}}{3}"; o[ sqrt(3) ] = "\\sqrt{3}"; return sign + ( o[n] || n ); } { sin: [ DEG ? "-90^\\circ" : "-\\dfrac{\\pi}{2}", DEG ? "90^\\circ" : "\\dfrac{\\pi}{2}" ], cos: [ "0", DEG ? "180^\\circ" : "\\pi" ], tan: [ DEG ? "-90^\\circ" : "-\\dfrac{\\pi}{2}", DEG ? "90^\\circ" : "\\dfrac{\\pi}{2}" ] }[ FN ] DEG ? Y_DEGREES + "^\\circ" : fractionReduce(Y_RADIANS[0], Y_RADIANS[1]) + "\\pi"

What is the principal value of FN_TEX(PRETTY(X)) in degrees?

What is the principal value of FN_TEX(PRETTY(X)) in radians?

Y_DEGREES\Large{{}^\circ}

Y radians

FN_TEX(PRETTY(X)) = FN_TEX(PRETTY(X), false)

If FN_TEX( PRETTY( X ), false ) = \theta, then "\\" + FN\left( \theta \right) = PRETTY(X)

The range of FN_TEX("x") is \left[ DOMAIN[0], DOMAIN[1] \right].

Therefore DOMAIN[0] \leq \theta \leq DOMAIN[1].

"\\" + FN \left( ANSWER \right) = PRETTY(X)

So FN_TEX( PRETTY( X ) ) = ANSWER.