random() < 0.5
random() < 0.5
randFromArray([ "sin", "cos", "tan" ])
"\\" + FN + "^{-1}"
"\\arc" + FN
function( x, arc ) {
return ( ( typeof arc === "undefined" ? ARC : arc ) ? FN_ARC : FN_INV ) + "\\left(" + x + "\\right)";
}
[ 0, 1/2, sqrt(2)/2, sqrt(3)/2 ]
[ 0, sqrt(3)/3, 1, sqrt(3) ]
( random() < 0.5 ? -1 : 1 ) * {
sin: randFromArray( SIN_RANGE ),
cos: randFromArray( SIN_RANGE ),
tan: randFromArray( TAN_RANGE )
}[ FN ]
{
sin: asin,
cos: acos,
tan: atan
}[ FN ]( X )
round( Y * 180 / PI )
KhanUtil.toFraction( Y / Math.PI, 0.001 )
function( n ) {
var sign = n < 0 ? "-" : "";
n = abs( n );
var o = {};
o[ 1/2 ] = "\\frac{1}{2}";
o[ sqrt(2)/2 ] = "\\dfrac{\\sqrt{2}}{2}";
o[ sqrt(3)/2 ] = "\\dfrac{\\sqrt{3}}{2}";
o[ sqrt(3)/3 ] = "\\dfrac{\\sqrt{3}}{3}";
o[ sqrt(3) ] = "\\sqrt{3}";
return sign + ( o[n] || n );
}
{
sin: [ DEG ? "-90^\\circ" : "-\\dfrac{\\pi}{2}", DEG ? "90^\\circ" : "\\dfrac{\\pi}{2}" ],
cos: [ "0", DEG ? "180^\\circ" : "\\pi" ],
tan: [ DEG ? "-90^\\circ" : "-\\dfrac{\\pi}{2}", DEG ? "90^\\circ" : "\\dfrac{\\pi}{2}" ]
}[ FN ]
DEG ? Y_DEGREES + "^\\circ" : fractionReduce(Y_RADIANS[0], Y_RADIANS[1]) + "\\pi"
What is the principal value of FN_TEX(PRETTY(X))
in degrees?
What is the principal value of FN_TEX(PRETTY(X))
in radians?
Y_DEGREES\Large{{}^\circ}
Y radians
FN_TEX(PRETTY(X)) = FN_TEX(PRETTY(X), false)
If FN_TEX( PRETTY( X ), false ) = \theta
,
then "\\" + FN\left( \theta \right) = PRETTY(X)
The range of FN_TEX("x")
is \left[ DOMAIN[0], DOMAIN[1] \right]
.
Therefore DOMAIN[0] \leq \theta \leq DOMAIN[1]
.
"\\" + FN \left( ANSWER \right) = PRETTY(X)
So FN_TEX( PRETTY( X ) ) = ANSWER
.