randRange(1, 100)
randRange(2, 6)
randRange(1, 2)
randRange(1, SEQ_LENGTH)
DIFFERENCE * SEQ_LENGTH * (SEQ_LENGTH - 1) / 2
FIRST_NUM * SEQ_LENGTH + C
(function() {
if (DIFFERENCE === 1) {
return new Plural(function(num) {
return $.ngettext("integer", "integers", num);
});
} else if (isOdd(FIRST_NUM)) {
return new Plural(function(num) {
return $.ngettext("odd number", "odd numbers", num);
});
} else {
return new Plural(function(num) {
return $.ngettext("even number", "even numbers", num);
});
}
})()
(function() {
var sequence = "x";
for (var i = 1; i < SEQ_LENGTH; i++) {
sequence += "+ (x + " + (i * DIFFERENCE) + ")";
}
return sequence;
})()
FIRST_NUM + (TARGET_NUMBER - 1) * DIFFERENCE
The sum of SEQ_LENGTH
consecutive plural_form(SEQ_TYPE, SEQ_LENGTH) is SUM
.
What is the ordinalThrough20(TARGET_NUMBER) number in this sequence?
ANSWER
Call the first number in the sequence x
.
The next SEQ_TYPE in the sequence is x + DIFFERENCE
The sum of the SEQ_LENGTH
consecutive plural_form(SEQ_TYPE, SEQ_LENGTH) is:
SEQUENCE = SUM
SEQ_LENGTHx + C= SUM
SEQ_LENGTHx = SUM - C
x = FIRST_NUM
Thus, the first number is ANSWER
.
Since x
is the first number, x + (TARGET_NUMBER - 1) * DIFFERENCE
is the ordinalThrough20(TARGET_NUMBER) SEQ_TYPE.
Thus, the ordinalThrough20(TARGET_NUMBER) number in the sequence is ANSWER
.