\large{i ^ {EXP} = ?}
SOLUTION
1
i
-1
-i
Anything to the first power is the number itself.
The most important property of the imaginary unit i
is
that \blue{i ^ 2} = \pink{-1}
.
\qquad \begin{eqnarray}
i ^ 3 &=& (\pink{i ^ 2}) \cdot i \\
&=& (\blue{-1}) \cdot i \\
&=& -i
\end{eqnarray}
\qquad \begin{eqnarray}
i ^ 4 &=& (\pink{i ^ 2}) ^ 2 \\
&=& (\blue{-1}) ^ 2 \\
&=& 1
\end{eqnarray}
\qquad i ^ EXP = SOLUTION
\large{i ^ {EXP} = ?}
SOLUTION
1
i
-1
-i
The most important property of the imaginary unit i
is:
\qquad \blue{i ^ 2} = \pink{-1}
Therefore:
\qquad i ^ 4 = (\blue{i ^ 2}) ^ 2 = (\pink{-1}) ^ 2 = 1
So, we can simplify the expression by rewriting it in terms of i^4
.
Because EXP \div \blue{4} = \green{WHOLES}
\text{ REMAINDER_TEXT } \red{REMAINDER}
,
\qquad \begin{eqnarray}
i ^ {EXP} &=& (i^\blue{4})^\green{WHOLES}
\cdot i^\red{REMAINDER} \\
&=& (1)^\green{WHOLES}
\cdot i^\red{REMAINDER} \\
&=& i^\red{REMAINDER}
1
\end{eqnarray}
Anything to the first power is the number itself.
\qquad i ^ \red{1} = i
As stated above, \blue{i ^ 2} = \pink{-1}
.
\qquad \begin{eqnarray}
i ^ \red{3} &=& (\blue{i ^ 2}) \cdot i \\
&=& (\pink{-1}) \cdot i \\
&=& -i
\end{eqnarray}
i ^ {EXP} = i ^ {REMAINDER} = SOLUTION