Given the following reaction:
\qquad
R1_RATIO === 1 ? "" : R1_RATIOR1
+ R2_RATIO === 1 ? "" : R2_RATIOR2
\rightarrow
P1_RATIO === 1 ? "" : P1_RATIOP1
+ P2_RATIO === 1 ? "" : P2_RATIOP2
How many moles of P1
will be produced from
GIVEN_MASS \text{g}
of GIVEN
, assuming NOT_GIVEN
is available in excess?
\dfrac{GIVEN_MASS \cancel{\text{g}}}{GIVEN_MOLAR_MASS \cancel{\text{g}} / \text{mol}} =
\text{ plural(GIVEN_MOL, "mole")} \text{ OF }GIVEN
[Explain]
First we want to convert the given amount of GIVEN
from grams to moles. To do this, we divide
the given amount of GIVEN
by the molar mass of GIVEN
.
\dfrac{\text{GRAMS_OF }GIVEN}{\text{MOLAR_MASS_OF }GIVEN} = \text{MOLES_OF }GIVEN
To find the molar mass of GIVEN
, we look up the atomic weight of each atom in a molecule of
GIVEN
in the periodic table and add them together.
In this case, it's GIVEN_MOLAR_MASS \text{g/mol}
.
Dividing the given GIVEN_MASS \text{g}
of GIVEN
by the molar mass of
GIVEN_MOLAR_MASS \text{g/mol}
tells us we're starting with
\text{GIVEN_MOL plural_form(MOLE, GIVEN_MOL)}
of GIVEN
.
The mole ratio of \dfrac{GIVEN}{P1}
in the reaction is
\dfrac{GIVEN_RATIO}{P1_RATIO}
.
[Explain]
The reaction is \blue{GIVEN_RATIO}GIVEN
+ R2_RATIOR2 \rightarrow
\red{P1_RATIO}P1
+ P2_RATIOP2
.
The coefficients in front of each molecule tell us in what ratios the molecules react. In this case
cardinalThrough20(GIVEN_RATIO) GIVEN
for every
cardinalThrough20(P1_RATIO) P1
molecule.
The reaction is \blue{GIVEN_RATIO}GIVEN
+ R2_RATIOR2 \rightarrow
\red{P1_RATIO}P1
+ P2_RATIOP2
.
The coefficients in front of each molecule tell us in what ratios the molecules react. In this case
cardinalThrough20(GIVEN_RATIO) GIVEN
for every
cardinalThrough20(P1_RATIO) P1
molecules.
\qquad
\dfrac{GIVEN}{P1} = \dfrac{GIVEN_RATIO}{P1_RATIO} =
\dfrac{\text{ plural(GIVEN_MOL, "mole")}}{x}
x = \text{ P1_MOL plural_form(MOLE, P1_MOL)}
of P1
produced.