\Large{fracParens( BASE_N, BASE_D )^{fracSmall( ( EXP_NEG ? -1 : 1 ) * EXP_N, EXP_D )} = {?}}
SOL_N / SOL_D
= fracParens( BASEF_N, BASEF_D )^{fracSmall( EXP_N, EXP_D )}
= \left(fracParens( BASEF_N, BASEF_D )^{fracSmall( 1, EXP_D )}\right)^{EXP_N}
To simplify fracParens( BASEF_N, BASEF_D )^{fracSmall( 1, EXP_D )}
, figure out what goes in the blank:
\left(? \right)^{abs( EXP_D )}=frac( BASEF_N, BASEF_D )
To simplify fracParens( BASEF_N, BASEF_D )^{fracSmall( 1, EXP_D )}
, figure out what goes in the blank:
\left(\color{blue}{frac( ROOT_N, ROOT_D )}\right)^{abs( EXP_D )}=frac( BASEF_N, BASEF_D )
so \quadfracParens( BASEF_N, BASEF_D )^{fracSmall( 1, EXP_D )}=frac( ROOT_N, ROOT_D )
So fracParens( BASEF_N, BASEF_D )^{fracSmall( EXP_N, EXP_D )}=\left(fracParens( BASEF_N, BASEF_D )^{fracSmall( 1, EXP_D )}\right)^{EXP_N}=fracParens( ROOT_N, ROOT_D )^{EXP_N}
= fraction( ROOT_N, ROOT_D, true, true, false, true )^{EXP_N}
= v