The function f(x)
is graphed; what is its domain?
graphInit({
range: 10,
scale: 20,
axisArrows: "<->",
tickStep: 1,
labelStep: 1,
unityLabels: false,
labelFormat: function( s ) { return "\\small{" + s + "}"; }
});
graph.fn_path = path( FUNCTION_PATH, { stroke: BLUE } );
circle( FUNCTION_PATH[0], 0.15, { stroke: "none", fill: BLUE } );
circle( FUNCTION_PATH[ FUNCTION_PATH.length - 1], 0.15, { stroke: "none", fill: BLUE } );
DOMAIN[0]\;\le x\le\;
DOMAIN[1]
For what values of x
does f(x)
have a value?
Look at the horizontal axis as if it were a number line.
var domain_path = graph.fn_path.clone();
var tmp_path = path( $.map( FUNCTION_PATH, function( p ) { return [[ p[0], 0 ]]; }), { stroke: "none" } );
domain_path.animate( { path: tmp_path.attrs.path, "stroke-width": 4, stroke: GREEN }, ANIM_SPEED, "ease-in-out");
circle( [ FUNCTION_PATH[0][0], 0 ], 0.3, { stroke: "none", fill: GREEN, "fill-opacity": 0 } )
.animate( { "fill-opacity": 1.0 }, ANIM_SPEED, "ease-in-out" );
circle( [ FUNCTION_PATH[ FUNCTION_PATH.length - 1 ][0], 0 ], 0.3, { stroke: "none", fill: GREEN, "fill-opacity": 0 } )
.animate( { "fill-opacity": 1.0 }, ANIM_SPEED, "ease-in-out" );
tmp_path.remove();
DOMAIN[0]\le x\le DOMAIN[1]
The function f(x)
is graphed; what is its range?
RANGE[0]\;\le f(x)\le\;
RANGE[1]
What values can f(x)
have?
Look at the vertical axis as if it were a number line.
var range_path = graph.fn_path.clone();
var tmp_path = path( $.map( FUNCTION_PATH, function( p ) { return [[ 0, p[1] ]]; }), { stroke: "none" } );
range_path.animate( { path: tmp_path.attrs.path, "stroke-width": 4, stroke: GREEN }, ANIM_SPEED, "ease-in-out");
circle( [ 0, RANGE[0] ], 0.3, { stroke: "none", fill: GREEN, "fill-opacity": 0 } )
.animate( { "fill-opacity": 1.0 }, ANIM_SPEED, "ease-in-out" );
circle( [ 0, RANGE[1] ], 0.3, { stroke: "none", fill: GREEN, "fill-opacity": 0 } )
.animate( { "fill-opacity": 1.0 }, ANIM_SPEED, "ease-in-out" );
tmp_path.remove();
RANGE[0]\le f(x)\le RANGE[1]