Simplify the right-hand side of the equation below and state the condition under which the simplification is valid.
Y =
\dfrac{CX^2 + C * LINEARX + C * CONSTANT}{X - A}
Y =
X \neq
A
First factor the polynomial in the numerator.
We notice that all the terms in the numerator have a common factor of C
, so we can rewrite the expression:
Y =\dfrac{C(X^2 + LINEARX + CONSTANT)}{X - A}
Then we factor the remaining polynomial:
X^2
LINEAR > 0 ? "+" : "" \green{LINEAR}X
CONSTANT > 0 ? "+" : "" \blue{CONSTANT}
\pink{-A} B < 0 ? "+" : "" \pink{-B} = \green{LINEAR}
\pink{-A} \times \pink{-B} = \blue{CONSTANT}
(X A < 0 ? "+" : "" \pink{-A})
(X B < 0 ? "+" : "" \pink{-B})
This gives us a factored expression:
Y =
\dfrac{C(X A < 0 ? "+" : "" \pink{-A})
(X B < 0 ? "+" : "" \pink{-B})}{X + -A}
We can divide the numerator and denominator by (X - A)
:
Y =
\dfrac{C\cancel{(X A < 0 ? "+" : "" \pink{-A})}
(X B < 0 ? "+" : "" \pink{-B})}{\cancel{X - A}}
= C(X + -B)
Because we divided by (X - A)
,
\begin{align}
X - A &\neq 0 \\
X &\neq A
\end{align}
Therefore,
\qquad Y = C(X - B)
\qquad X \neq A