Simplify the right-hand side of the equation below and state the condition under which the simplification is valid.
Y = \dfrac{X^2 + CONSTANT}{X + A}
Y =
\space X \neq \space
-A
The numerator is in the form \pink{a^2} - \blue{b^2}
,
which is a difference of two squares so we can factor it as
(\pink{a} + \blue{b})(\pink{a} - \blue{b})
.
\qquad \pink{a = X}
\qquad \blue{b = \sqrt{A * A} = abs(A)}
So we can rewrite the expression as:
Y =
\dfrac{(\pink{X} + \blue{A})(\pink{X} \blue{-A})}
\dfrac{(\pink{X} \blue{A})(\pink{X} + \blue{-A})}
{X + A}
We can divide the numerator and denominator by (X + A)
:
Y =
\dfrac{\cancel{(\pink{X} + \blue{A})}(\pink{X} \blue{-A})}
\dfrac{\cancel{(\pink{X} \blue{A})}(\pink{X} + \blue{-A})}
{\cancel{X + A}} = X + -A
Because we divided by (X + A)
,
\begin{align}
X + A &\neq 0 \\
X &\neq -A
\end{align}
Therefore,
\qquad Y = X - A
\qquad X \neq -A
Simplify the right-hand side of the equation below and state the condition under which the simplification is valid.
Y =
\dfrac{X^2 + plus(LINEAR + X) + CONSTANT}{X - A}
Y =
\space X \neq \space
A
X^2 + plus(LINEAR + X) + CONSTANT = (X - A)(X - B)
So we can rewrite the expression as:
Y =
\dfrac{(X + -A)(X + -B)}{X + -A}
We can divide the numerator and denominator by (X - A)
:
Y =
\dfrac{\cancel{(X - A)}(X - B)}{\cancel{X - A}}
= X - B
Because we divided by (X - A)
,
\begin{align}
X + -A &\neq 0 \\
X &\neq A
\end{align}
Therefore,
\qquad Y = X - B
\qquad X \neq A
First factor the polynomial in the numerator.