randRangeNonZero(-9, 9) randRange(2, 9)
randRangeNonZero(-9, 9) randRange(2, 9)
N2 > 0 ? N1 * D2 : -N1 * D2 D1 * abs(N2) getGCD(NUMERATOR, DENOMINATOR)
Reduce to lowest terms:

fraction(N1, D1) \div fraction(N2, D2, false, false, false, N2 < 0) = {?}

NUMERATOR / DENOMINATOR

Dividing by a fraction is the same as multiplying by the reciprocal of the fraction.

The reciprocal of fraction(N2, D2) is fraction(D2, N2).

Therefore:

\qquad fraction(N1, D1) \div fraction(N2, D2, false, false, false, N2 < 0) = fraction(N1, D1) \times fraction(D2, N2, false, false, false, N2 < 0)

\qquad\phantom{fraction(N1, D1) \div fraction(N2, D2, false, false, false, N2 < 0)} = \dfrac{N1 \times negParens(N2 < 0 ? -D2 : D2)}{D1 \times abs(N2)}

\qquad\phantom{fraction(N1, D1) \div fraction(N2, D2, false, false, false, N2 < 0)} = fraction(NUMERATOR, DENOMINATOR)

Simplify:

\qquadfractionReduce(NUMERATOR, DENOMINATOR)