Which equation shows direct variation?
V1 = MULTIPLIER \cdot V2
V1
varies directly with V2
if V1 = k \cdot V2
for some constant k
.
V1 = MULTIPLIER \cdot V2
fits this pattern, with k = MULTIPLIER
.
V1 \cdot V2 = MULTIPLIER
V1 \cdot V2 = MULTIPLIER_INVERSE
V1 = MULTIPLIER \cdot \frac{1}{V2}
MULTIPLIER \cdot V1 = \frac{1}{V2}
MULTIPLIER_INVERSE \cdot V1 = \frac{1}{V2}
MULTIPLIER \cdot \frac{1}{V1} = V2
MULTIPLIER_INVERSE \cdot \frac{1}{V1} = V2
V1 + V2 = MULTIPLIER_INVERSE
V1 = MULTIPLIER - V2
\frac{V1}{V2} = MULTIPLIER
V1
varies directly with V2
if V1 = k \cdot V2
for some constant k
.
If you divide each side of this expression by V2
, you get \dfrac{V1}{V2} = k
for some constant k
.
\dfrac{V1}{V2} = MULTIPLIER
fits this pattern, with k = MULTIPLIER
.
MULTIPLIER \cdot V1 = V2
V1
varies directly with V2
if V1 = k \cdot V2
for some constant k
.
If you divide each side of this expression by k
, you get \dfrac{1}{k} \cdot V1 = V2
.
MULTIPLIER \cdot V1 = V2
fits this pattern, with k = MULTIPLIER_INVERSE
.
Which equation shows inverse variation?
V1 = MULTIPLIER \cdot \frac{1}{V2}
V1
varies inversely with V2
if V1 = k \cdot \dfrac{1}{V2}
for some constant k
.
V1 = MULTIPLIER \cdot \dfrac{1}{V2}
fits this pattern, with k = MULTIPLIER
.
\frac{V1}{V2} = MULTIPLIER
\frac{V1}{V2} = MULTIPLIER_INVERSE
V1 = MULTIPLIER \cdot V2
V1 = MULTIPLIER_INVERSE \cdot V2
MULTIPLIER \cdot V1 = V2
MULTIPLIER_INVERSE \cdot V1 = V2
MULTIPLIER \cdot \frac{1}{V1} = \frac{1}{V2}
MULTIPLIER_INVERSE \cdot \frac{1}{V1} = \frac{1}{V2}
V1 - V2 = MULTIPLIER_INVERSE
V1 = MULTIPLIER + V2
V1 \cdot V2 = MULTIPLIER
V1
varies inversely with V2
if V1 = k \cdot \dfrac{1}{V2}
for some constant k
.
If you multiply each side of this expression by V2
, you get V1 \cdot V2 = k
for some constant k
.
V1 \cdot V2 = MULTIPLIER
fits this pattern, with k = MULTIPLIER
.
MULTIPLIER \cdot \dfrac{1}{V1} = V2
V1
varies inversely with V2
if V1 = k \cdot \dfrac{1}{V2}
for some constant k
.
If you divide each side of this expression by k
, you get \dfrac{V1}{k} = \dfrac{1}{V2}
.
Then you can take the inverse of each side to get \dfrac{k}{V1} = V2
.
MULTIPLIER \cdot \dfrac{1}{V1} = V2
fits this pattern, with k = MULTIPLIER
.