Represent the following data using a box-and-whiskers plot. Exclude the median when computing the quartiles:
NUM
If it helps, you may drag the numbers to put them in a different order. The order isn't checked with your answer. SORTER.init( "sortable" )
Begin by putting the data in order:
\qquad \large{SORTED_DATA.join( ", " )}
The sample minimum is the smallest number.
\qquad \large{\pink{MIN}, SORTED_DATA.slice( 1 ).join( ", " )}
The sample maximum is the largest number.
\qquad \large{SORTED_DATA.slice( 0, -1 ).join( ", " ), \pink{MAX}}
The median is middle number.
\qquad \large{SORTED_DATA.slice( 0, (COUNT - 1) / 2 ).join( ", " ),
\pink{MEDIAN},
SORTED_DATA.slice( (COUNT + 1) / 2 ).join( ", " )}
\qquad \large{SORTED_DATA.slice( 0, COUNT / 2 - 1 ).join( ", " ),
\purple{SORTED_DATA[COUNT / 2 - 1]}
\pink{\ |\ }
\purple{SORTED_DATA[COUNT / 2]},
SORTED_DATA.slice( COUNT / 2 + 1 ).join( ", " )}
Since there are two middle numbers, the median is the mean of the middle two numbers.
\qquad \dfrac{\purple{SORTED_DATA[COUNT / 2 - 1]} + \purple{SORTED_DATA[COUNT / 2]}}{2} =
\pink{MEDIAN}
The first quartile is the median of the data points to the left of the median.
\qquad \large{SORTED_DATA.slice(0, floor(COUNT / 4)).join(", "),
\pink{Q1},
SORTED_DATA.slice(floor(COUNT / 4) + 1, floor(COUNT / 2)).join(", ")}
\qquad \large{SORTED_DATA.slice(0, floor(COUNT / 4) - 1).join(", "),
\purple{SORTED_DATA[floor(COUNT / 4) - 1]},
\purple{SORTED_DATA[floor(COUNT / 4)]},
SORTED_DATA.slice(floor(COUNT / 4) + 1, floor(COUNT / 2)).join(", ")}
\qquad Q_1 = \dfrac{\purple{SORTED_DATA[floor(COUNT / 4) - 1]} +
\purple{SORTED_DATA[floor(COUNT / 4)]}}{2} = \pink{Q1}
The third quartile is the median of the data points to the right of the median.
\qquad \large{SORTED_DATA.slice(ceil(COUNT / 2), COUNT - 1 - floor(COUNT / 4)).join(", "),
\pink{SORTED_DATA[COUNT - 1 - floor(COUNT / 4)]},
SORTED_DATA.slice(COUNT - floor(COUNT / 4)).join(", ")}
\qquad \large{SORTED_DATA.slice(ceil(COUNT / 2), COUNT - floor(COUNT / 4) - 1).join( ", " ),
\purple{SORTED_DATA[COUNT - floor(COUNT / 4) - 1]},
\purple{SORTED_DATA[COUNT - floor(COUNT / 4)]},
SORTED_DATA.slice( COUNT - floor(COUNT / 4) + 1 ).join( ", " )}
\qquad Q_3 = \dfrac{\purple{SORTED_DATA[COUNT - floor(COUNT / 4) - 1]} +
\purple{SORTED_DATA[COUNT - floor(COUNT / 4)]}}{2} = \pink{Q3}
.
Your box-and-whisker plot should look like the example below the number line.