Express the fraction as a decimal.
\dfrac{NUMERATOR}{DENOMINATOR}
DECIMAL
\dfrac{NUMERATOR}{DENOMINATOR}
represents NUMERATOR \div DENOMINATOR
.
A negative number divided by a negative number equals a positive number,
so NUMERATOR \div DENOMINATOR = -NUMERATOR \div -DENOMINATOR
\begin{eqnarray}
NUMERATOR \div DENOMINATOR
&=& (-1 \times -NUMERATOR) \div DENOMINATOR \\
&=& -1 \times (-NUMERATOR \div DENOMINATOR)
\end{eqnarray}
\begin{eqnarray}
NUMERATOR \div DENOMINATOR
&=& NUMERATOR \div (-1 \times -DENOMINATOR) \\
&=& -1 \times (NUMERATOR \div -DENOMINATOR)
\end{eqnarray}
\begin{eqnarray}
\dfrac{NUMERATOR}{DENOMINATOR}
&=& -1 \times (abs(NUMERATOR) \div abs(DENOMINATOR)) \\
&=& -1 \times -DECIMAL \\
&=& DECIMAL
\end{eqnarray}
\dfrac{NUMERATOR}{DENOMINATOR} = DECIMAL
Express the fraction as a decimal.
Round to 4
decimal places if necessary.
\dfrac{NUMERATOR}{DENOMINATOR}
DECIMAL
\dfrac{NUMERATOR}{DENOMINATOR}
represents NUMERATOR \div DENOMINATOR
.
Notice how the decimal is repeating and will continue to repeat as we bring down more zeros.
So the answer is DECIMAL
to 4
decimal places.