Let a
and b
be complex numbers:
\begin{align*}
a &= REAL1 + coefficient(COMPLEX1)i \\
b &= REAL2 + coefficient(COMPLEX2)i
\end{align*}
Plot a + b
by dragging the point.
Sum the real and imaginary components separately.
a + b =
(\purple{REAL1} + \pink{coefficient(COMPLEX1)i}) +
(\purple{REAL2} + \pink{coefficient(COMPLEX2)i})
\hphantom{a + b} =
\purple{(REAL1 + REAL2)} +
\pink{(COMPLEX1 + COMPLEX2)i}
\hphantom{a + b} =
\purple{REAL1 + REAL2}
+
\pink{coefficient(COMPLEX1 + COMPLEX2)i}
Plot a - b
by dragging the point.
Subtract the real and imaginary components separately.
a - b =
(\purple{REAL1} + \pink{coefficient(COMPLEX1)i}) -
(\purple{REAL2} + \pink{coefficient(COMPLEX2)i})
\hphantom{a - b} =
\purple{(REAL1 - REAL2)} +
\pink{(COMPLEX1 - COMPLEX2)i}
\hphantom{a - b} =
\purple{REAL1 - REAL2}
+
\pink{coefficient(COMPLEX1 - COMPLEX2)i}