(x + {}
)^2 = {}
Solution:
x = {}
\quad\text{OR}\quad x = {}
Complete the square to solve for x
.
POLY_TEXT = 0
(x + {}
)^2 = {}
x = {}
\quad\text{OR}\quad x = {}
Completed Square:
(x + {}
-X1 )^2 = {}
0
Solution:
x = \quad
X1
First, divide the polynomial by MULT
, the coefficient of the x^2
term.
x^2 + decimalFraction( B, 1, 1 )B_SIGNx + decimalFraction( C, 1, 1 ) = 0
Move the constant term to the right side of the equation.
x^2 + decimalFraction( B, 1, 1 )B_SIGNx = decimalFraction( C * -1, 1, 1 )
We complete the square by taking half of the coefficient of our x
term, squaring it, and adding it to both sides of the equation. The coefficient of our x
term is decimalFraction( B, 1, 1 )
, so half of it would be decimalFraction( B / 2, 1, 1 )
, and squaring it gives us \color{blue}{decimalFraction( pow( B / 2, 2 ), 1, 1 )}
.
x^2 + decimalFraction( B, 1, 1 )B_SIGNx \color{blue}{ + decimalFraction( pow( B / 2, 2 ), 1, 1 )} = decimalFraction( C * -1, 1, 1 ) \color{blue}{ + decimalFraction( pow( B / 2, 2 ), 1, 1 )}
We can now rewrite the left side of the equation as a squared term.
( x + decimalFraction( B / 2, 1, 1 ) )^2 = decimalFraction( C * -1 + pow( B / 2, 2 ), 1, 1 )
Note that the left side of the equation is already a perfect square trinomial. The coefficient of our x
term is decimalFraction( B, 1, 1 )
, half of it is decimalFraction( B / 2, 1, 1 )
, and squaring it gives us \color{blue}{decimalFraction( pow( B / 2, 2 ), 1, 1 )}
, our constant term.
Thus, we can rewrite the left side of the equation as a squared term.
( x + decimalFraction( B / 2, 1, 1 ) )^2 = decimalFraction( C * -1 + pow( B / 2, 2 ), 1, 1 )
Take the square root of both sides.
x + decimalFraction( B / 2, 1, 1 ) = \pmdecimalFraction( sqrt( C * -1 + pow( B / 2, 2 ) ), 1, 1 )
Isolate x
to find the solution(s).
x = decimalFraction( -B / 2, 1, 1 )\pmdecimalFraction( sqrt( C * -1 + pow( B / 2, 2 ) ), 1, 1 )
The solutions are: x = decimalFraction( -B / 2 + sqrt( C * -1 + pow( B / 2, 2 ) ), 1, 1 ) \text{ OR } x = decimalFraction( -B / 2 - sqrt( C * -1 + pow( B / 2, 2 ) ), 1, 1 )
The solution is: x = decimalFraction( -B / 2 + sqrt( C * -1 + pow( B / 2, 2 ) ), 1, 1 )
We already found the completed square: ( x + decimalFraction( B / 2, 1, 1 ) )^2 = decimalFraction( C * -1 + pow( B / 2, 2 ), 1, 1 )