randomTriangleAngles.triangle()
[ [ 0, 1 ], [] ]
[ [ 1 ], [ 2] ]
function(){
var trA = new Triangle( [ 5, -8 ], ANGLES , 14 , {} );
trA.boxOut( [ [ [ 0, -10 ], [ 0, 10 ] ] ], [ 0.4 , 0 ] );
trA.boxOut( [ [ [ 11 , -10 ], [ 11, 10 ] ] ], [ -0.4 , 0 ] );
return trA;
}()
function(){
var pointD = findIntersection( bisectAngle( TR_A.sides[ 0 ], reverseLine( TR_A.sides[ 2 ] ), 1 ), TR_A.sides[ 1 ] );
return pointD;
}()
function(){
var trB = new Triangle( [0,0],[], 3, {}, [ TR_A.points[ 0 ], TR_A.points[ 1 ], POINT_D ] );
trB.labels = { "angles" : ["\\theta"], "sides" : mergeArray( clearArray( trB.niceSideLengths, SIDES_B[ 0 ] ), clearArray( [ "?", "?", "?" ], SIDES_B[ 1 ] ) ), "points": [ "A", "B", "D" ] };
return trB;
}()
function(){
var trC = new Triangle( [0,0],[], 3, {}, [ TR_A.points[ 0 ], POINT_D, TR_A.points[ 2 ] ] );
trC.labels = { "angles" : ["\\theta"] , "sides" : mergeArray( clearArray( trC.niceSideLengths, SIDES_C[ 0 ] ), clearArray( [ "?", "?", "?" ], SIDES_C[ 1 ] ) ), "points": [ "", "", "C" ] };
return trC;
}()
TR_B.niceSideLengths[ 1 ]
TR_B.niceSideLengths[ 0 ]
TR_C.niceSideLengths[ 1 ]
TR_C.niceSideLengths[ 2 ]
TR_B.niceSideLengths[ 1 ]
TR_B.niceSideLengths[ 0 ]
TR_C.niceSideLengths[ 1 ]
TR_C.niceSideLengths[ 2 ]
What is the length of \overline{AC}
?
init({
range: TR_A.boundingRange(1.5)
})
TR_B.draw();
TR_B.drawLabels();
TR_C.draw();
TR_C.drawLabels();
\angle DAB
and \angle DAC
are congruent.
Therefore AD
is the bisector of \angle CAB
Angle Bisector Theorem states that \dfrac{AB}{BD} = \dfrac{AC}{CD}
roundTo( 1, TEMP_AB * TEMP_CD / TEMP_BD )
ABC
is a triangle. What is the length of \overline{AC}
?
Round to one decimal place.
AC
\dfrac{AB}{BD} = \dfrac{AC}{CD}
AC = \dfrac{AB \times CD}{BD}
AC = AC
roundTo( 1, TEMP_AC * TEMP_BD / TEMP_CD )
[ [ 1 ], [0] ]
[ [ 1,2 ], [ ] ]
ABC
is a triangle. What is the length of \overline{AB}
?
Round to one decimal place.
AB
\dfrac{AB}{BD} = \dfrac{AC}{CD}
AB = \dfrac{AC \times BD}{CD}
AB = AB
roundTo( 1, TEMP_AC * TEMP_BD / TEMP_AB )
[ [ 1, 0 ], [] ]
[ [ 2 ], [1 ] ]
ABC
is a triangle. What is the length of \overline{CD}
?
Round to one decimal place.
CD
\dfrac{AB}{BD} = \dfrac{AC}{CD}
CD = \dfrac{AC \times BD}{AB}
CD = CD
roundTo( 1, TEMP_AB * TEMP_CD / TEMP_AC )
[ [ 0 ], [ 1 ] ]
[ [ 1, 2 ], [ ] ]
What is the length of \overline{BD}
in \triangle ABC
?
Round to one decimal place.
BD
\dfrac{AB}{BD } = \dfrac{AC}{CD}
BD = \dfrac{AB \times CD}{AC}
BD = BD