randFromArray(["+", "-"]) randVar()
randRangeWeighted(0, 5, 1, 0.4) randRangeWeighted(-10, 10, 0, 0.4)
randRangeWeighted(0, 5, 1, 0.4) randRangeWeighted(-10, 10, 0, 0.4)
new RationalExpression([[A1, X], B1]) new RationalExpression([[A2, X], B2])
randRangeWeighted(1, 5, 1, 0.4) randRangeNonZero(-10, 10) randRangeWeighted(1, 5, 1, 0.4) randRangeNonZero(-10, 10)
new RationalExpression([[A3, X], B3]) new RationalExpression([[A4, X], B4]) DENOMINATOR2.multiply(NUMERATOR1) DENOMINATOR1.multiply(NUMERATOR2) SIGN === '+' ? PRODUCT2 : PRODUCT2.multiply(-1) PRODUCT1.add(PRODUCT2a) DENOMINATOR1.multiply(DENOMINATOR2) DENOMINATOR.getGCD(NUMERATOR) NUMERATOR.divide(GCD) DENOMINATOR.divide(GCD)

Simplify and expand the following expression:

\dfrac{NUMERATOR1}{DENOMINATOR1}SIGN \dfrac{NUMERATOR2}{DENOMINATOR2}

(NUMERSOL.toString())/(DENOMSOL.toString())
(NUMERSOL.toString())/(DENOMSOL.toStringFactored())
(NUMERSOL.toString())/((DENOMINATOR1)(DENOMINATOR2))
(NUMERSOL.toStringFactored())/(DENOMSOL.toString())
(NUMERSOL.toStringFactored())/(DENOMSOL.toStringFactored())
(NUMERSOL.toStringFactored())/((DENOMINATOR1)(DENOMINATOR2))

In order to add expressions, they must have a common denominator.

In order to subtract expressions, they must have a common denominator.

Get both fractions over a common denominator of (DENOMINATOR1)(DENOMINATOR2).

Multiply the first term by \dfrac{DENOMINATOR2}{DENOMINATOR2}:

\qquad\begin{align*} \dfrac{NUMERATOR1}{DENOMINATOR1} \times \dfrac{DENOMINATOR2}{DENOMINATOR2} & = \dfrac{(NUMERATOR1)(DENOMINATOR2)}{(DENOMINATOR1)(DENOMINATOR2)} \\ & = \dfrac{PRODUCT1}{(DENOMINATOR1)(DENOMINATOR2)}\end{align*}

Multiply the second term by \dfrac{DENOMINATOR1}{DENOMINATOR1}:

\qquad\begin{align*} \dfrac{NUMERATOR2}{DENOMINATOR2} \times \dfrac{DENOMINATOR1}{DENOMINATOR1} & = \dfrac{(NUMERATOR2)(DENOMINATOR1)}{(DENOMINATOR2)(DENOMINATOR1)} \\ & = \dfrac{PRODUCT2}{(DENOMINATOR2)(DENOMINATOR1)}\end{align*}

Now we have:

\qquad = \dfrac{PRODUCT1}{(DENOMINATOR1)(DENOMINATOR2)} SIGN \dfrac{PRODUCT2}{(DENOMINATOR2)(DENOMINATOR1)}

Now both terms have a common denominator we can simply add the numerators:

\qquad \dfrac{PRODUCT1 + PRODUCT2}{(DENOMINATOR1)(DENOMINATOR2)}

Now both terms have a common denominator we can subtract the numerators:

\qquad = \dfrac{PRODUCT1 - (PRODUCT2)}{(DENOMINATOR1)(DENOMINATOR2)}

\qquad = \dfrac{PRODUCT1 + PRODUCT2a}{(DENOMINATOR1)(DENOMINATOR2)}

\qquad = \dfrac{NUMERATOR}{(DENOMINATOR1)(DENOMINATOR2)}

Expand the denominator:

\qquad = \dfrac{NUMERATOR}{DENOMINATOR}

Simplify:

\qquad = \dfrac{NUMERSOL}{DENOMSOL}