Simplify the following expression:
\dfrac{N1}{D1}N1
SIGN
\dfrac{N2}{D2}
(N2)
N2
In order to add subtract expressions, they must have a common denominator.
Multiply the first expression by \dfrac{D2}{D2}
.
\qquad
\dfrac{N1}{D1} \times \dfrac{D2}{D2} =
\dfrac{N_PRODUCT1}{D_PRODUCT}
Multiply the second expression by \dfrac{D1}{D1}
.
\qquad
\dfrac{N2}{D2} \times \dfrac{D1}{D1} =
\dfrac{N_PRODUCT2}{D_PRODUCT}
Therefore
\qquad
\dfrac{N_PRODUCT1}{D_PRODUCT} SIGN
\dfrac{N_PRODUCT2}{D_PRODUCT}
Now the expressions have the same denominator we can simply subtract the numerators:
\qquad
\dfrac{N_PRODUCT1 -
(N_PRODUCT2)
N_PRODUCT2
}{D_PRODUCT}
Distribute the negative sign:
\qquad \dfrac{N_PRODUCT1 + N_PRODUCT2.multiply(-1)}{D_PRODUCT}
Now the expressions have the same denominator we can simply add the numerators:
\qquad \dfrac{N_PRODUCT1 + N_PRODUCT2}{D_PRODUCT}
\qquad \dfrac{N_SUM}{D_PRODUCT}
FACTOR
:\qquad NUMERSOL
\qquad \dfrac{NUMERSOL}{DENOMSOL}