randFromArray(["+", "-"]) randVar()
randRangeWeighted(1, 10, 1, 0.4) randRange(2, 10)
randRange(2, 10) randRangeWeighted(1, 10, 1, 0.4) getLCM(DENOMINATOR1, DENOMINATOR2) DENOMINATORCOEFF / DENOMINATOR1 DENOMINATORCOEFF / DENOMINATOR2 SIGN === "+" ? NUMERATOR1 * F1 + NUMERATOR2 * F2 : NUMERATOR1 * F1 - NUMERATOR2 * F2 getGCD(NUMERATORCOEFF, DENOMINATORCOEFF)
new Term(NUMERATOR1, X) new Term(NUMERATOR2, X) new Term(DENOMINATOR1) new Term(DENOMINATOR2) new Term(NUMERATORCOEFF, X) new Term(DENOMINATORCOEFF) NUMERATOR.divide(FACTOR) DENOMINATOR.divide(FACTOR)
new Term(NUMERATOR1) new Term(NUMERATOR2) new Term(DENOMINATOR1, X) new Term(DENOMINATOR2, X) new Term(NUMERATORCOEFF) new Term(DENOMINATORCOEFF, X) NUMERATOR.divide(FACTOR) DENOMINATOR.divide(FACTOR)

Simplify the following expression:

\dfrac{N1}{D1}SIGN \dfrac{N2}{D2}

(NUMERSOL.toString())/(DENOMSOL.toString())

In order to addsubtract expressions, they must have a common denominator.

The smallest common denominator is the least common multiple of D1 and D2.

\lcm(D1, D2) = DENOMINATOR

\dfrac{F1}{F1} \cdot \dfrac{N1}{D1}SIGN \dfrac{F2}{F2} \cdot \dfrac{N2}{D2}

\dfrac{N1.multiply(F1)}{DENOMINATOR}SIGN \dfrac{N2.multiply(F2)}{DENOMINATOR}

\dfrac{N1.multiply(F1)SIGN N2.multiply(F2)}{DENOMINATOR}

\dfrac{NUMERATOR}{DENOMINATOR}

Simplify the expression by dividing the numerator and denominator by FACTOR:
\dfrac{NUMERSOL}{DENOMSOL}