randFromArray(["+", "-"]) randFromArray([ ["a", "b", "c"], ["f", "g", "h"], ["m", "n", "p"], ["r", "s", "t"], ["p", "q", "r"], ["x", "y", "z"] ]) randRange(0, 1) ? randFromArray([2, 5, 10]) : 1 randRange(0, 1) ? FACTORCOEFFICIENT: new Term(FACTORCOEFFICIENT, randFromArray(X))
getRationalExpression(X).multiply(FACTORTERM)
getRationalExpression(X).multiply(FACTORTERM)
getRationalExpression(X).multiply(FACTORTERM)
getUsedVariables([DENOMINATOR, NUMERATOR1, NUMERATOR2]) SIGN === "+" ? NUMERATOR2 : NUMERATOR2.multiply(-1) NUMERATOR1.add(SIGNEDNUMERATOR) SUMNUMERATOR.getGCD(DENOMINATOR) SUMNUMERATOR.divide(GCD) DENOMINATOR.divide(GCD)

Simplify the following expression:

\dfrac{NUMERATOR1}{DENOMINATOR}SIGN \dfrac{NUMERATOR2}{DENOMINATOR}

You can assume USEDVARIABLES \neq 0.

(NUMERATORSOL.toString())/(DENOMINATORSOL.toString())
(NUMERATORSOL.toString())/(DENOMINATORSOL.toStringFactored())
(NUMERATORSOL.toStringFactored())/(DENOMINATORSOL.toString())
(NUMERATORSOL.toStringFactored())/(DENOMINATORSOL.toStringFactored())

Since the expressions have the same denominator we simply combine the numerators:

\dfrac{NUMERATOR1 + NUMERATOR2}{DENOMINATOR}

Since the expressions have the same denominator we simply combine the numerators:

\dfrac{NUMERATOR1 - (NUMERATOR2)}{DENOMINATOR}

\dfrac{SUMNUMERATOR}{DENOMINATOR}

The numerator and denominator have a common factor of GCD.toString(), so we can simplify

\dfrac{NUMERATORSOL}{DENOMINATORSOL}