Solve for x:
                    
                    
                        A|x + E| + B =
                        C|x + E| + D
                    
                
                            x =  
                              or
                            x =  
                        
                                Subtract
                                
                                    \red{abs(C)|x + E|}
                                
                                from both sides:
                            
                                Add
                                
                                    \red{abs(C)|x + E|}
                                
                                to both sides:
                            
\qquad\begin{eqnarray}
                                A|x + E| + B
                                &=&
                                C|x + E| + D
                                \\ \\
                                \red{ - C|x + E|}
                                &&
                                \red{ - C|x + E|} \\ \\
                                A - C|x + E| +
                                B
                                &=& D
                                \end{eqnarray}
                            
                                Subtract
                                \red{abs(B)}
                                from both sides:
                            
                                Add
                                \red{abs(B)}
                                to both sides:
                            
\qquad\begin{eqnarray}
                                A - C|x + E| +
                                B &=& D \\ \\
                                \red{ - B} &&
                                \red{ - B} \\ \\
                                A - C|x + E| &=&
                                D - B
                                \end{eqnarray}
                            
                                Divide both sides by
                                \red{A - C}:
                            
\qquad
                                \dfrac{A - C|x + E|}
                                    {\red{A - C}} =
                                \dfrac{D - B}
                                    {\red{A - C}}
                            
Simplify:
                                \qquad |x + E| =
                                SIMPLIFIED
                            
Because the absolute value of an expression is its distance from zero, it has two solutions, one negative and one positive:
\qquad
                                    x + E = -SIMPLIFIED
                                
or
\qquad
                                    x + E = SIMPLIFIED
                                
                                    Solve for the solution where
                                    x + E is negative:
                                
\qquad
                                    x + E = -SIMPLIFIED
                                
                                    Subtract
                                    \red{abs(E)}
                                    from both
                                    sides:
                                
                                    Add
                                    \red{abs(E)}
                                    to both
                                    sides:
                                
\qquad\begin{eqnarray}
                                    x + E &=&
                                    -SIMPLIFIED \\ \\
                                    \red{- E} &&
                                    \red{- E} \\ \\
                                    x &=& -SIMPLIFIED -
                                    E
                                    \end{eqnarray}
                                
                                    Change the
                                    \red{{} - E}
                                    to an equivalent fraction with a
                                    denominator of
                                    SIMPLIFIED_DENOM:
                                
\qquad
                                    x = - SIMPLIFIED
                                    \red{E > 0 ? "-" : "+"
                                    fraction(abs(E) * SIMPLIFIED_DENOM,
                                    SIMPLIFIED_DENOM)}
                                
\qquad
                                x = fractionReduce.apply(null,
                                NEG_SOLUTION)
                            
                                    Then calculate the solution where
                                    x + E is positive:
                                
\qquad
                                    x + E = SIMPLIFIED
                                
                                    Subtract
                                    \red{abs(E)}
                                    from both
                                    sides:
                                
                                    Add
                                    \red{abs(E)}
                                    to both
                                    sides:
                                
\qquad\begin{eqnarray}
                                    x + E &=&
                                    SIMPLIFIED \\ \\
                                    \red{- E} &&
                                    \red{- E} \\ \\
                                    x &=& SIMPLIFIED -
                                    E
                                    \end{eqnarray}
                                
                                    Change the
                                    \red{{} - E}
                                    to an equivalent fraction with a
                                    denominator of
                                    SIMPLIFIED_DENOM:
                                
\qquad
                                    x = SIMPLIFIED
                                    \red{E > 0 ? "-" : "+"
                                    fraction(abs(E) * SIMPLIFIED_DENOM,
                                    SIMPLIFIED_DENOM)}
                                
\qquad
                                x = fractionReduce.apply(null,
                                POS_SOLUTION)
                            
                                Subtract
                                
                                    \red{A|x + E|}
                                
                                from both sides:
                            
                                Add
                                
                                    \red{A|x + E|}
                                
                                to both sides:
                            
\qquad\begin{eqnarray}
                                A|x + E| + B
                                &=&
                                C|x + E| + D
                                \\ \\ \red{- A|x + E|}
                                &&
                                \red{- A|x + E|} \\ \\
                                B &=&
                                C - A|x + E| +
                                D
                                \end{eqnarray}
                            
                                Subtract
                                abs(D)
                                from both sides:
                            
                                Add
                                abs(D)
                                to both sides:
                            
\qquad\begin{eqnarray}
                                B &=&
                                C - A|x + E| +
                                D \\ \\
                                \red{- D} &&
                                \red{- D} \\ \\
                                B - D &=&
                                C - A|x + E|
                                \end{eqnarray}
                            
                                Divide both sides by
                                \red{C - A}.
                            
\qquad
                                \dfrac{B - D}
                                    {\red{C - A}} =
                                \dfrac{C - A|x + E|}
                                    {\red{C - A}}
                            
Simplify:
\qquad
                                SIMPLIFIED = |x + E|
                            
Because the absolute value of an expression is its distance from zero, it has two solutions, one negative and one positive:
\qquad
                                    -SIMPLIFIED = x + E
                                
or
\qquad
                                    SIMPLIFIED = x + E
                                
                                    Solve for the solution where
                                    x + E is negative:
                                
                                    \qquad - SIMPLIFIED = x +
                                    E
                                
                                    Subtract
                                    \red{abs(E)}
                                    from both
                                    sides:
                                
                                    Add
                                    \red{abs(E)}
                                    to both
                                    sides:
                                
\qquad\begin{eqnarray}
                                    - SIMPLIFIED &=&
                                    x + E \\ \\
                                    \red{- E} &&
                                    \red{- E} \\ \\
                                    -SIMPLIFIED - E
                                    &=& x
                                    \end{eqnarray}
                                
                                    Change the
                                    \red{{} - E}
                                    to an equivalent fraction with a
                                    denominator of
                                    SIMPLIFIED_DENOM.
                                
\qquad
                                    - SIMPLIFIED
                                    \red{E > 0 ? "-" : "+"
                                    fraction(abs(E) * SIMPLIFIED_DENOM,
                                    SIMPLIFIED_DENOM)} = x
                                
\qquad
                                fractionReduce.apply(null,
                                NEG_SOLUTION) = x
                            
                                    Then calculate the solution where
                                    x + E is positive:
                                
\qquad
                                    SIMPLIFIED = x + E
                                
                                    Subtract
                                    \red{abs(E)}
                                    from both
                                    sides:
                                
                                    Add
                                    \red{abs(E)}
                                    to both
                                    sides:
                                
\qquad\begin{eqnarray}
                                    SIMPLIFIED &=&
                                    x + E \\ \\
                                    \red{- E} &&
                                    \red{- E} \\ \\
                                    SIMPLIFIED - E
                                    &=& x
                                    \end{eqnarray}
                                
                                    Change the
                                    \red{{} - E}
                                    to an equivalent fraction with a
                                    denominator of
                                    SIMPLIFIED_DENOM.
                                
\qquad
                                    SIMPLIFIED
                                    \red{E > 0 ? "-" : "+"
                                    fraction(abs(E) * SIMPLIFIED_DENOM,
                                    SIMPLIFIED_DENOM)} = x
                                
\qquad
                                fractionReduce.apply(null,
                                POS_SOLUTION) = x
                            
                        Thus, the correct answer is
                        x =
                            fractionReduce.apply(null, NEG_SOLUTION)
                        
                        or
                        x =
                            fractionReduce.apply(null, POS_SOLUTION)
                        .
                    
The absolute value cannot be negative. Therefore, there is no solution.