Determine the proper relationship between the following pair of functions.
f(n) = \log n^2
g(n) = (\log n)^2
f(n)
is O(g(n))
f(n)
is in \Omega(g(n))
f(n)
is \Theta(g(n))
if \lim \frac{f(n)}{g(n)} \rightarrow 0
,
then f(n)
is in O(g(n))
.
if \lim \frac{f(n)}{g(n)} \rightarrow
constant,
then f(n)
is \Theta(g(n))
.
if \lim \frac{f(n)}{g(n)} \rightarrow \infty
,
then f(n)
is in \Omega(g(n))
.