Regular Pumping Lemma
\(L = \{a^nb^n \text{: } n \geq 0 \}\)
\(L = \{w \in \{a, b\}^*\text{: } n_a(w) < n_b(w)\}\)
\(L = \{ww^R \text{: } w \in \{a, b\}^*\}\)
\(L = \{(ab)^na^k \text{: } n > k, k \geq 0\}\)
\(L = \{a^nb^kc^{n+k} \text{: } n \geq 0, k \geq 0\}\)
\(L = \{a^nb^la^k \text{: } n > 5, l > 3, k \leq l\}\)
\(L = \{a^n \text{: n is even}\}\)
\(L = \{a^nb^k \text{: n is odd or k is even.}\}\)
\(L = \{bba(ba)^na^{n-1}\}\)
\(L = \{b^5w \text{: } w \in \{a, b\}^* \text{, } 2n_a(w) = 3n_b(w)\}\)
\(L = \{b^5w \text{: } w \in \{a, b\}^* \text{, } (2n_a(w) + 5n_b(w)) \text{ mod } 3 = 0\}\)
\(L = \{b^k(ab)^n(ba)^n \text{: } k \geq 4 \text{, } n = 1,2,...\}\)
\(L = \{(ab)^{2n} \text{: } n = 1,2,...\}\)
1. Select a lemma.
2. Choose who makes the first move. Press "Enter" to continue.