Context-Free Pumping Lemma
\(L = \{a^nb^nc^n \text{: } n \geq 0 \}\)
\(L = \{ww \text{: } w \in \{a, b\}^*\}\)
\(L = \{a^nb^ja^nb^j\text{: } n \geq 0, j \geq 0\}\)
\(L = \{w \in \{a, b, c\}^* \text{: } n_a(w) < n_b(w) < n_c(w)\}\)
\(L = \{w \in \{a, b, c\}^* \text{: } n_a(w) > n_b(w) = n_c(w)\}\)
\(L = \{a^ib^jc^k \text{: } i > j, i > k\}\)
\(L = \{a^nb^n \text{:} n \geq 0\}\)
\(L = \{a^kb^nc^nd^j \text{: } j \neq k\}\)
\(L = \{ww_1w^R \text{: } |w_1| \geq 5 \text{, } w \text{ & } w_1 \in \{a, b\}^*\}\)
\(L = \{ww_1w^R \text{: } |w| = |w_1| \text{, } w \text{ & } w_1 \in \{a, b\}^*\}\)
\(L = \{w_1b^nw_2 \text{: } n_a(w_1) < n_a(w_2) \text{, } n_a(w_1) < n \text{, } w_1 \text{ & } w_2 \in \{a, b\}^*\}\)
\(L = \{w_1cw_2cw_3cw_4 \text{: } w_1 = w_2 \text{ or } w_3 = w_4 \text{, } w_i \in \{a, b\}^* \text{, } |w_i| > 0\}\)
\(L = \{w_1vv^Rw_2 \text{: } n_a(w_1) = n_a(w_2) \text{, } |v| > 3, v, w_1, w_2 \in \{a, b\}^*\}\)
1. Select a lemma.
2. Choose who makes the first move. Press "Enter" to continue.